91 research outputs found

    Refugees Welcome? Online Hate Speech and Sentiments in Twitter in Spain during the Reception of the Boat Aquarius

    Get PDF
    High-profile events can trigger expressions of hate speech online, which in turn modifies attitudes and offline behavior towards stigmatized groups. This paper addresses the first path of this process using manual and computational methods to analyze the stream of Twitter messages in Spanish around the boat Aquarius (n = 24,254) before and after the announcement of the Spanish government to welcome the boat in June 2018, a milestone for asylum seekers acceptance in the EU and an event that was highly covered by media. It was observed that most of the messages were related to a few topics and had a generally positive sentiment, although a significant part of messages expressed rejection or hate—often supported by stereotypes and lies—towards refugees and migrants and towards politicians. These expressions grew after the announcement of hosting the boat, although the general sentiment of the messages became more positive. We discuss the theoretical, practical, and methodological implications of the study, and acknowledge limitations referred to the examined timeframe and to the preliminary condition of the conclusions

    Intravitreal implants manufactured by supercritical foaming for treating retinal diseases

    Get PDF
    Chronic retinal diseases, such as age-related macular degeneration (AMD), are a major cause of global visual impairment. However, current treatment methods involving repetitive intravitreal injections pose financial and health burdens for patients. The development of controlled drug release systems, particularly for biological drugs, is still an unmet need in prolonging drug release within the vitreous chamber. To address this, green supercritical carbon dioxide (scCO2) foaming technology was employed to manufacture porous poly(lactic-co-glycolic acid) (PLGA)-based intravitreal implants loaded with dexamethasone. The desired implant dimensions were achieved through 3D printing of customised moulds. By varying the depressurisation rates during the foaming process, implants with different porosities and dexamethasone release rates were successfully obtained. These implants demonstrated controlled drug release for up to four months, surpassing the performance of previously developed implants. In view of the positive results obtained, a pilot study was conducted using the monoclonal antibody bevacizumab to explore the feasibility of this technology for preparing intraocular implants loaded with biologic drug molecules. Overall, this study presents a greener and more sustainable alternative to conventional implant manufacturing techniques, particularly suited for drugs that are susceptible to degradation under harsh conditions

    Preproghrelin expression is a key target for insulin action on adipogenesis.

    Get PDF
    This study aimed to investigate the role of preproghrelin-derived peptides in adipogenesis. Immunocytochemical analysis of 3T3-L1 adipocyte cells showed stronger preproghrelin expression compared with that observed in 3T3-L1 preadipocyte cells. Insulin promoted this expression throughout adipogenesis identifying mTORC1 as a critical downstream substrate for this profile. The role of preproghrelin-derived peptides on the differentiation process was supported by preproghrelin knockdown experiments, which revealed its contribution to adipogenesis. Neutralization of endogenous O-acyl ghrelin (acylated ghrelin), unacylated ghrelin, and obestatin by specific antibodies supported their adipogenic potential. Furthermore, a parallel increase in the expression of ghrelin-associated enzymatic machinery, prohormone convertase 1/3 (PC1/3) and membrane-bound O-acyltransferase 4 (MBOAT4), was dependent on the expression of preproghrelin in the course of insulin-induced adipogenesis. The coexpression of preproghrelin system and their receptors, GHSR1a and GPR39, during adipogenesis supports an autocrine/paracrine role for these peptides. Preproghrelin, PC1/3, and MBOAT4 exhibited dissimilar expression depending on the white fat depot, revealing their regulation in a positive energy balance situation in mice. The results underscore a key role for preproghrelin-derived peptides on adipogenesis through an autocrine/paracrine mechanism

    κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance

    Get PDF
    Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine’s effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine’s effects on energy balanceThis research was funded from the Xunta de Galicia (R.N.: 2016-PG057; ML: 2016-PG068); Ministerio de Economía y Competitividad (MINECO) co-funded by the FEDER Program of EU (R.N.: RTI2018-099413-B-I00; C.D.: BFU2017-87721-P; M.L.: RTI2018-101840-B-I00); Atresmedia Corporación (RN and ML); Fundación BBVA (RN); “la Caixa” Foundation (ID 100010434), under the agreements LCF/PR/HR19/52160016 (R.N.) and LCF/PR/HR19/52160022 (M.L.); European Foundation for the Study of Diabetes (R.N.), ERC Synergy Grant-2019-WATCH- 810331 (R.N.) and Western Norway Regional Health Authority (Helse Vest RHF) (J.F.). P.S.-C. is the recipient of a fellowship from Xunta de Galicia (ED481B 2018/050). The CiMUS is supported by the Xunta de Galicia (2016-2019, ED431G/05). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIIIS

    The Obestatin/GPR39 System Is Up-regulated by Muscle Injury and Functions as an Autocrine Regenerative System

    Get PDF
    Background: Satellite cell activation is orchestrated by several signals, which induce their differentiation into skeletal muscle fibers. Results: Obestatin and the GPR39 receptor exert an autocrine role on the control of myogenesis. Conclusion: Our data indicate that obestatin/GPR39 is an injury-regulated signal that functions as a myogenic regenerative system. Significance: Strategies to enhance obestatin-mediated signaling could be useful in treating trauma-induced muscle injuries and skeletal muscle myopathies

    Deep eutectic solvents for the extraction of fatty acids from microalgae biomass: Recovery of omega-3 eicosapentaenoic acid

    Get PDF
    Microalgae are a vast group of autotrophic microorganisms whose metabolic diversity makes them a natural source of valuable organic compounds such as lipids, carbohydrates, proteins, vitamins, and bioactive molecules. Several microalgae species contain notable amounts of polyunsaturated fatty acids, particularly eicosapentaenoic acid (EPA), which is an important alpha-linolenic acid derivative for human health. Conventional methods are considered effective at recovering total lipids from microalgae, however, they imply the use of large volumes of organic solvents such as methanol and chloroform, which are toxic and pose environmental risks. Thus, it is necessary to find new methods involving sustainable and green extracting phases. Deep eutectic solvents (DES) are renewable compounds often formed, but not exclusively, by quaternary ammonium salts and non-hydrated metal halides. Due to their availability, low cost, biodegradability, and environmental friendliness, DES are a promising alternative to organic solvents in extraction processes. This work assesses the efficiency of several DES phases for the extraction of fatty acids from the microalgae Nannochloropsis gaditana with a special interest in the recovery of EPA. The tested phases include mixtures containing choline chloride, lactic acid, ethylene glycol, and sodium acetate. Their performances were compared to those provided by conventional methods based on the use of organic solvents. Specifically, an in-situ transesterification process based on methanol with 10 %v/v of HCl was optimized in terms of temperature, time, and catalyst amount to be used as a reference. The results show that several of the tested eutectics such as choline chloride-ethylene glycol were capable of matching and even outperforming the best results obtained for EPA, with 104 % of extracted EPA methyl ester as the percentage of the mass obtained with HCl-methanol. The extraction capacity of DES was also improved by microalgae biomass pretreatment using ultrasonic and NaCl-based methods in a further stage. In the case of EPA extraction, and under optimal conditions, DES were capable of recovering over 18 % more quantity than the obtained with HCl-methanol. These results demonstrate that DES are effective at both recovering total fatty acids from pretreated biomass and at selectively recovering EPA using both unpretreated and pretreated biomass.The authors wish to acknowledge the financial support of the Ministry of Science, Innovation, and Universities (MICINN) ref. RTI2018-099011-B-I00 and the Seneca Foundation Science and Technology Agency of the Region of Murcia ref. 20957/PI/18. Dr. Sergio Sánchez Segado wishes to acknowledge The Ministry of Science, Innovation, and Universities of Spain its support through the “Beatriz Galindo” Fellowship BEAGAL18/00079

    Design, development, and scientific performance of the Raman Laser Spectrometer EQM on the 2020 ExoMars (ESA) Mission

    Get PDF
    The Raman Laser Spectrometer (RLS) is one of the three Pasteur Payload instruments located within the rover analytical laboratory drawer (ALD), for ESA’s Aurora exploration programme, ExoMars 2020 mission. The instrument will analyse the crushed surface and subsurface samples that are positioned below the Raman optical head by the ALD carousel. The RLS engineering and qualification model (EQM) was delivered to ESA at the end of 2017, after a wide technical and scientific test characterization campaign. The scientific campaign comprised instrument calibration and detailed evaluation of the scientific requirements and overall performance. For spectral calibration, continuous emission standard lamps (such as Hg-Ar, Ne, and Xe) were utilized, as well as Raman spectra of pure liquids typically used as standards (cyclohexane and carbon tetrachloride (CCl4)). In addition, Raman spectra of the RLS calibration target (CT), a small disc of polyethylene terephthalate (PET) were obtained at various temperatures. This target, placed inside the rover, will be used for both Instrument health checks and calibration activities throughout Mars operations. For the scientific requirements and performance evaluations, several liquid and solid samples were analysed under a wide range of ambient conditions. The obtained spectral band parameters (peak position, relative peak intensity, peak width, and peak profile) were evaluated. Also, the instrument response (in terms of SNR) was characterized at different integration times and detector operating temperatures. In this paper, we provide a description of the development, verification, functional test, and overall scientific performance of the RLS instrument developed for ExoMars. Particular attention is placed on the performance of the EQM, which is the most representative instrument, in terms of engineering and functionality, of the flight model (FM) and in addition is used for performing all the mechanical, thermal, and radiation tests necessary for space qualification (for planetary applications). The data presented and analysed here, comprise part of the overall dataset obtained during the full instrument characterization campaign conducted at INTA before and during delivery and integration of the EQM in the rover ALD at TAS-I facilities (Torino, Italy). The results obtained confirm that the full functionality and scientific performance of the RLS instrument was maintained after integration.Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-

    Aplicación de la tecnología de pilas de combustible microbianas en depuración de aguas de origen urbano e industrial con producción simultánea de energía eléctrica

    Get PDF
    En el presente trabajo se ha estudiado la influencia de las pilas de combustible microbianas (MFCs), sobre la depuración de agua de distinta procedencia, con producción simultánea de energía. Se estudiaron valores para aguas procedentes de industrias como matadero, aceites industriales, de elaboración de zumo de limón y urbanas, con el objeto de comprobar si esta tecnología es una herramienta capaz de introducirse en los tratamientos convencionales de aguas residuales.Asociación de Jóvenes Investigadores de Cartagena, (AJICT). Universidad Politécnica de Cartagena. Escuela Técnica Superior de Ingeniería Industrial UPCT, (ETSII). Escuela Técnica Superior de Ingeniería Agronónica, (ETSIA), Escuela Técnica Superior de Ingeniería de Telecomunicación (ETSIT). Escuela de Ingeniería de Caminos, Canales, y Puertos y de Ingeniería de Minas, (EICM). Fundación Séneca, Agencia Regional de Ciencia y Tecnología. Parque Tecnológico de Fuente Álamo. Grupo Aquilin

    Membranas poliméricas de inclusión basadas en líquidos iónicos

    Get PDF
    Número de publicación: 2502069 Número de solicitud: 201330453La presente invención se refiere a una membrana polimérica de inclusión que comprende un polímero base, un agente de extracción y una agente plastificante donde el agente de extracción y el agente plastificante es un líquido iónico, la invención también se refiere al uso de dichas membranas en pilas de combustible microbianas, al uso de las mismas para la separación selectiva de mezclas de ácidos orgánicos, alcoholes y ésteres y al uso de las mismas como matrices de inmovilización de productos químicos, bioquímicos y/o biológicos.Universidad Politécnica de CartagenaUniversidad de Murci
    corecore