4 research outputs found

    Impact of metal implants on xSPECT/CT Bone reconstruction: the "shining metal artefact".

    No full text
    Novel reconstruction algorithms, such as xSPECT Bone, are gaining more and more importance in Nuclear Medicine. With xSPECT Bone, the reconstructed emission image is enhanced by the information obtained in the corresponding CT image. The CT defines tissue classes according to the Hounsfield units. In the iterative reconstruction, each tissue class is handled separately in the forward projection step, and all together in the back projection step. As a consequence, xSPECT Bone reconstruction generates images with improved boundary delineation and better anatomic representation of tracer activity. Applying this technique, however, showed that artefacts may occur, when no uptake regions, like metal implants, exhibit fictitious uniform tracer uptake. Due to limitations in spatial resolution in gamma cameras, the xSPECT Bone reconstructed image resulted in spill-out activity from surrounding high uptake region being uniformly distributed over the metal implants. This new technology of xSPECT Bone reconstruction in general enhances the image quality of SPECT/CT; however, the potential introduction of specific artefacts which inadvertently come along with this new technology and their frequency have not yet been addressed in the literature. Therefore, the purpose of this work was to identify and characterize these specific metal artefacts (the so-called shining metal artefact) in order to reduce false positives and avoid potentially misdiagnosing loosened or infected implants. In this work, we report five cases imaged with bone SPECT/CT of 5 anatomical regions (foot, elbow, spine, shoulder, ribs and knee). All cases demonstrated "shining metal artefacts" in xSPECT Bone reconstruction. While xSPECT Bone reconstruction algorithm significantly improves image quality for the diagnosis of bone and joint disorders with SPECT/CT, specific "shining metal artefacts" caused by the xSPECT Bone have to be recognized in order to avoid image misinterpretation suggesting metallic implant loosening or possible infection. The simultaneous analysis of conventionally reconstructed SPECT images (for Siemens the Flash3D reconstruction) helps to avoid misinterpretation of potential artefacts introduced by xSPECT Bone reconstruction

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore