27 research outputs found

    Diseño de herramientas y metodologías docentes innovadoras para la asignatura "Notación y Edición Musical" del Grado de Musicología

    Get PDF
    Diseño de herramientas y metodologías docentes innovadoras para la asignatura “Notación y Edición Musical” del Grado de Musicología (sin financiación). Carmen Julia Gutiérrez González (coord.) Facultad de Geografía e Historia, Departamento de Musicologí

    Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis

    No full text
    In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis.This work was funded in part by the European Regional Development Fund through the Ministerio de Ciencia e Innovación (Grants BIO2010-15201 to C.G. and BFU2009-07368 to J.L.C.) and the Junta de Andalucía (Grant BIO-273). This work was also funded by the CONSOLIDER CSD2007-00057, Spain, and through fellowship support from the Junta para la Ampliación de Estudios program (Consejo Superior de Investigaciones Científicas) awarded to C.A. We thank María Ángeles Bermúdez for the SA content determination.Peer Reviewe

    Polyphenols and IUGR pregnancies: effects of the antioxidant hydroxytyrosol on the hippocampus proteome in a porcine model

    Get PDF
    Supplementation of a mother’s diet with antioxidants such as hydroxytyrosol (HTX) has been proposed to ameliorate the adverse phenotypes of foetuses affected by intrauterine growth restriction (IUGR). Our previous studies showed, in a porcine model of IUGR, an effect of maternal HTX supplementation on the neurotransmitter profile of several brain areas and the morphology of the hippocampus in 100 days old foetuses. The present study analyzed the impact of maternal HTX supplementation on the hippocampus proteome at this foetal age by TMT10plex labelling. Eleven differentially abundant proteins were identified by comparing both conditions, and eight of them downregulated and three upregulated in the HTX-treated group. The downregulated proteins were mainly involved in protein synthesis and RNA metabolism and may explain the differences in neuron differentiation in the HTX-treated group. The upregulated proteins were related to cell detoxification and could represent a potential mechanism to explain the neuroprotective effect of HTX.This research was funded by the Spanish Ministry of Economy and Competitivity (AGL2015-68463-C2-2-P to A.B. and projects AGL2013-48121-C3-R and AGL2016-79321-C2-1-R to A.G.B.), and co-funded by FEDER. N.Y. and M.V.-G. were the recipients of a graduate student fellowship from the Spanish FPU National Program Grant (Ministry of Science, Innovation and Universities; number FPU17/01881 and FPU14/01285) and C.G.-C. is the recipient of an FPI National Program Grant (number BES-2014-070464)
    corecore