9 research outputs found
Air flow visualization with infrared thermography
[EN] Air is transparent for long wave infrared radiation. Therefore, initially it is impossible with thermography to visualize any type of airflow, on the other hand, an important issue for many building, industrial and research applications.
The authors have developed a simple and affordable technique to visualize dynamics of airflows with the use of any type of infrared camera.
Several examples of the application of the method are shown at this paper, and future and promising new developments are presented.Royo, R.; Cañada-Soriano, M.; Pérez Feito, R. (2019). Air flow visualization with infrared thermography. Universidad de Castilla-La Mancha
José Antonio Almendros Ibáñez. 489-497. http://hdl.handle.net/10251/20135748949
Dispositivo automático de posicionamiento para corte de tejido tridimensional en una muestra, vibrátomo que lo comprende y su uso
La presente invención se refiere a un dispositivo
automático de posicionamiento para corte de tejido
tridimensional, en una muestra de tejido viva o fijada
caracterizado porque al menos comprende:
- una plataforma (1) para depositar las muestras de
tejido
- un subsistema electromecánico que al menos
comprende
- un primer motor (2) y primeros medios mecánicos
que imprimen un movimiento angular a la plataforma
(1)
- un segundo motor (3) y segundos medios
mecánicos que imprimen un movimiento de
inclinación de la plataforma (1)
a un vibrátomo que comprende este dispositivo de
posicionamiento, y a su uso en histología, anatomía,
neurociencia, bioquímica o farmacología.Peer reviewedUniversitat Politécnica de Valencia, Consejo Superior de Investigaciones CientíficasA1 Solicitud de adición a la patent
Automatic positioning device for cutting three-dimensional tissue in living or fixed samples. Proof of concept
"© 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] The study and analysis of tissues has always been an important part of the subject in biology. For this reason, obtaining specimens of tissue has been vital to morphological and functionality research. Historically, the main tools used to obtain slices of tissue have been microtomes and vibratomes. However, they are largely unsatisfactory. This is because it is impossible to obtain a full, three-dimensional structure of a tissue sample with these devices.
This paper presents an automatic positioning device for a three-dimensional cut in living or fixed tissue samples, which can be applied mainly in histology, anatomy, biochemistry and pharmacology. The system consists of a platform on which the tissue samples can be deposited, plus two containers. An electromechanical system with motors and gears gives the platform the ability to change the orientation of a sample. These orientation changes were tested with movement sensors to ensure that accurate changes were made.
This device paves the way for researchers to make cuts in the sample tissue along different planes and in different directions by maximizing the surface of the tract that appears in a slice.Research supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-2-R and BFU2015-64380-C2-1-R. Santiago Canals acknowledges financial support from the Spanish State Research Agency, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (ref. SEV- 2013-0317). Dario Quinones is supported by grant Ayudas para la formacion de personal investigador (FPI) from Universitat Politecnica de Valencia. We are grateful to Begoña Fernández (Neuroscience Institute, Consejo Superior de Investigaciones Científicas - CSIC, Alicante, Spain) for her excellent technical assistance.Quiñones, DR.; Pérez Feito, R.; García Manrique, JA.; Canals-Gamoneda, S.; Moratal, D. (2017). Automatic positioning device for cutting three-dimensional tissue in living or fixed samples. Proof of concept. Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society. 1372-1375. https://doi.org/10.1109/EMBC.2017.8037088S1372137
A Tangible Educative 3D Printed Atlas of the Rat Brain
[EN] In biology and neuroscience courses, brain anatomy is usually explained using Magnetic Resonance (MR) images or histological sections of different orientations. These can show the most important macroscopic areas in an animals¿ brain. However, this method is neither dynamic nor intuitive. In this work, an anatomical 3D printed rat brain with educative purposes is presented. Hand manipulation of the structure, facilitated by the scale up of its dimensions, and the ability to dismantle the ¿brain¿ into some of its constituent parts, facilitates the understanding of the 3D organization of the nervous system. This is an alternative method for teaching students in general and biologists in particular the rat brain anatomy. The 3D printed rat brain has been developed with eight parts, which correspond to the most important divisions of the brain. Each part has been fitted with interconnections, facilitating assembling and disassembling as required. These solid parts were smoothed out, modified and manufactured through 3D printing techniques with poly(lactic acid) (PLA). This work presents a methodology that could be expanded to almost any field of clinical and pre-clinical research, and moreover it avoids the need for dissecting animals to teach brain anatomy.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-2-R (D.M.) and BFU2015-64380-C2-1-R and EU Horizon 2020 Program 668863-SyBil-AA grant (S.C.). S.C. acknowledges financial support from the Spanish State Research Agency, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (ref. SEV-2013-0317). D.R.Q. was supported by grant "Ayudas para la formacion de personal investigador (FPI)" from the Vicerrectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia.Quiñones, DR.; Ferragud-Agulló, J.; Pérez Feito, R.; García Manrique, JA.; Canals-Gamoneda, S.; Moratal, D. (2018). A Tangible Educative 3D Printed Atlas of the Rat Brain. Materials. 11(9):1531-1542. https://doi.org/10.3390/ma11091531S15311542119Perrin, R. J., Fagan, A. M., & Holtzman, D. M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature, 461(7266), 916-922. doi:10.1038/nature08538Linden, D. E. J. (2012). The Challenges and Promise of Neuroimaging in Psychiatry. Neuron, 73(1), 8-22. doi:10.1016/j.neuron.2011.12.014Teipel, S., Drzezga, A., Grothe, M. J., Barthel, H., Chételat, G., Schuff, N., … Fellgiebel, A. (2015). Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. The Lancet Neurology, 14(10), 1037-1053. doi:10.1016/s1474-4422(15)00093-9Woo, C.-W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365-377. doi:10.1038/nn.4478Ivanov, I. (2017). The Neuroimaging Gap - Where do we go from Here? Acta Psychopathologica, 03(03). doi:10.4172/2469-6676.100090Kastrup, O., Wanke, I., & Maschke, M. (2005). Neuroimaging of infections. NeuroRX, 2(2), 324-332. doi:10.1602/neurorx.2.2.324Preece, D., Williams, S. B., Lam, R., & Weller, R. (2013). «Let»s Get Physical’: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anatomical Sciences Education, 6(4), 216-224. doi:10.1002/ase.1345Zheng, Y., Yu, D., Zhao, J., Wu, Y., & Zheng, B. (2016). 3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning? Journal of Surgical Education, 73(3), 518-523. doi:10.1016/j.jsurg.2016.01.003Li, Z., Li, Z., Xu, R., Li, M., Li, J., Liu, Y., … Chen, Z. (2015). Three-dimensional printing models improve understanding of spinal fracture—A randomized controlled study in China. Scientific Reports, 5(1). doi:10.1038/srep11570Kettenbach, J., Wong, T., Kacher, D., Hata, N., Schwartz, R. ., Black, P. M., … Jolesz, F. . (1999). Computer-based imaging and interventional MRI: applications for neurosurgery. Computerized Medical Imaging and Graphics, 23(5), 245-258. doi:10.1016/s0895-6111(99)00022-1Schwarz, A. J., Danckaert, A., Reese, T., Gozzi, A., Paxinos, G., Watson, C., … Bifone, A. (2006). A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: Application to pharmacological MRI. NeuroImage, 32(2), 538-550. doi:10.1016/j.neuroimage.2006.04.214Marro, A., Bandukwala, T., & Mak, W. (2016). Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Current Problems in Diagnostic Radiology, 45(1), 2-9. doi:10.1067/j.cpradiol.2015.07.009Michalski, M. H., & Ross, J. S. (2014). The Shape of Things to Come. JAMA, 312(21), 2213. doi:10.1001/jama.2014.9542Ratto, M., & Ree, R. (2012). Materializing information: 3D printing and social change. First Monday, 17(7). doi:10.5210/fm.v17i7.3968Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H.-U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5(4), 335-341. doi:10.1007/s11548-010-0476-xMannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., … McAlpine, M. C. (2013). 3D Printed Bionic Ears. Nano Letters, 13(6), 2634-2639. doi:10.1021/nl4007744Guy, J. R., Sati, P., Leibovitch, E., Jacobson, S., Silva, A. C., & Reich, D. S. (2016). Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets. Journal of Neuroscience Methods, 257, 55-63. doi:10.1016/j.jneumeth.2015.09.002Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2(4), 189-210. doi:10.1002/hbm.460020402Flandin, G., & Novak, M. J. U. (2013). fMRI Data Analysis Using SPM. fMRI, 51-76. doi:10.1007/978-3-642-34342-1_6Mueller, B. (2012). Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing. Assembly Automation, 32(2). doi:10.1108/aa.2012.03332baa.010Gulanová, J., Kister, I., Káčer, N., & Gulan, L. (2018). A Comparative Study of various AM Technologies Based on Their Accuracy. Procedia CIRP, 67, 238-243. doi:10.1016/j.procir.2017.12.206D’Urso, P. S., Barker, T. M., Earwaker, W. J., Bruce, L. J., Atkinson, R. L., Lanigan, M. W., … Effeney, D. J. (1999). Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. Journal of Cranio-Maxillofacial Surgery, 27(1), 30-37. doi:10.1016/s1010-5182(99)80007-9Müller, A., Krishnan, K. G., Uhl, E., & Mast, G. (2003). The Application of Rapid Prototyping Techniques in Cranial Reconstruction and Preoperative Planning in Neurosurgery. Journal of Craniofacial Surgery, 14(6), 899-914. doi:10.1097/00001665-200311000-00014Guarino, J., Tennyson, S., McCain, G., Bond, L., Shea, K., & King, H. (2007). Rapid Prototyping Technology for Surgeries of the Pediatric Spine and Pelvis. Journal of Pediatric Orthopaedics, 27(8), 955-960. doi:10.1097/bpo.0b013e3181594cedCanstein, C., Cachot, P., Faust, A., Stalder, A. F., Bock, J., Frydrychowicz, A., … Markl, M. (2008). 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: Comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magnetic Resonance in Medicine, 59(3), 535-546. doi:10.1002/mrm.21331Giesel, F. L., Mehndiratta, A., von Tengg-Kobligk, H., Schaeffer, A., Teh, K., Hoffman, E. A., … Wild, J. M. (2009). Rapid Prototyping Raw Models on the Basis of High Resolution Computed Tomography Lung Data for Respiratory Flow Dynamics. Academic Radiology, 16(4), 495-498. doi:10.1016/j.acra.2008.10.008Malyala, S. K., Ravi Kumar, Y., & Rao, C. S. P. (2017). Organ Printing With Life Cells: A Review. Materials Today: Proceedings, 4(2), 1074-1083. doi:10.1016/j.matpr.2017.01.122Foster, K. R. (2016). 3-Dimensional Printing in Medicine: Hype, Hope, and the Challenge of Personalized Medicine. Philosophy and Engineering, 211-228. doi:10.1007/978-3-319-45193-0_1
Open Source 3D Printed Lung Tumor Movement Simulator for Radiotherapy Quality Assurance
[EN] In OECD (Organization for Economic Co-operation and Development) countries, cancer is one of the main causes of death, lung cancer being one of the most aggressive. There are several techniques for the treatment of lung cancer, among which radiotherapy is one of the most effective and least invasive for the patient. However, it has associated difficulties due to the moving target tumor. It is possible to reduce the side effects of radiotherapy by effectively tracking a tumor and reducing target irradiation margins. This paper presents a custom electromechanical system that follows the movement of a lung tumor. For this purpose, a hysteresis loop of human lung movement during breathing was studied to obtain its characteristic movement equation. The system is controlled by an Arduino, steppers motors and a customized 3D printed mechanism to follow the characteristic human breathing, obtaining an accurate trajectory. The developed device helps the verification of individualized radiation treatment plans and permits the improvement of radiotherapy quality assurance procedures.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-2-R (D.M.). D.R.Q. was supported by grant "Ayudas para la formacion de personal investigador (FPI)" from the Vicerrectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia.Quiñones Colomer, DR.; Soler-Egea, D.; González-Pérez, V.; Reibke, J.; Simarro-Mondejar, E.; Pérez Feito, R.; García Manrique, JA.... (2018). Open Source 3D Printed Lung Tumor Movement Simulator for Radiotherapy Quality Assurance. Materials. 11(8 (1317)):1-11. https://doi.org/10.3390/ma11081317S111118 (1317
Automatic positioning device for three-dimensional tissue cutting in a sample, vibratome comprising same and use thereof
La presente invención se refiere a un dispositivo automático de posicionamiento para corte de tejido tridimensional, en una muestra de tejido viva o fijada caracterizado porque al menos comprende: - una plataforma (1) para depositar las muestras de tejido - un subsistema electromecánico que al menos comprende - un primer motor (2) y primeros medios mecánicos que imprimen un movimiento angular a la plataforma (1) - un segundo motor (3) y segundos medios mecánicos que imprimen un movimiento de inclinación de la plataforma (1) a un vibrátomo que comprende este dispositivo de posicionamiento, y a su uso en histología, anatomía, neurociencia, bioquímica o farmacología.Peer reviewedUniversitat Politécnica de Valencia, Consejo Superior de Investigaciones CientíficasB9 Patente corregid
Alcune riflessioni sulla previdenza complementare riformata
Titanium and its alloys are widely used in medical implants because of their excellent properties. However,
bacterial infection is a frequent cause of titanium-based implant failure and also compromises its osseointegration.
In this study, we report a new simple method of providing titanium surfaces with antibacterial properties by
alternating antibacterial chitosan domains with titanium domains in the micrometric scale. Surface microgrooves
were etched on pure titanium disks at intervals of 60 μm using a modified 3D printer and were then
coated with chitosan antibacterial polysaccharide. The dimensions of the patterned microgrooves made it
possible to fix the chitosan domains to the titanium substrate without the need for covalent bonding. These
domains were stable after 5 days of immersion in water and reduced the surface contact angle. Preliminary cell
adhesion assays demonstrated that MC3T3-E1 pre-osteoblasts preferentially adhered to the titanium regions,
while C2C12 myoblasts were uniformly distributed over the whole surface.Peer ReviewedPostprint (author's final draft
Chitosan patterning on titanium alloys
Titanium and its alloys are widely used in medical implants because of their excellent properties. However,
bacterial infection is a frequent cause of titanium-based implant failure and also compromises its osseointegration.
In this study, we report a new simple method of providing titanium surfaces with antibacterial properties by
alternating antibacterial chitosan domains with titanium domains in the micrometric scale. Surface microgrooves
were etched on pure titanium disks at intervals of 60 μm using a modified 3D printer and were then
coated with chitosan antibacterial polysaccharide. The dimensions of the patterned microgrooves made it
possible to fix the chitosan domains to the titanium substrate without the need for covalent bonding. These
domains were stable after 5 days of immersion in water and reduced the surface contact angle. Preliminary cell
adhesion assays demonstrated that MC3T3-E1 pre-osteoblasts preferentially adhered to the titanium regions,
while C2C12 myoblasts were uniformly distributed over the whole surface.Peer Reviewe
Implementation of a University Guidance Service (SOU) in the Faculty of Biological Sciences: Comprehensive Student Support and Monitoring Program
El acompañamiento y el seguimiento académico de los estudiantes son tareas de gran importancia, necesarias para garantizar el éxito de su carrera profesional durante su vida universitaria, y después de ésta. Estos procesos no comienzan necesariamente con el ingreso de los estudiantes en la Universidad, sino que se extienden a los estudiantes de último curso de educación secundaria y bachillerato. Existe por tanto la necesidad de incluir dentro de las acciones que realizamos en la facultad (información, formación, inclusión) a los estudiantes de bachillerato, dándoles a conocer nuestro entorno de cara a su incorporación en la facultad. Por otro lado, la experiencia del equipo que trabajará en este proyecto, nos ha llevado a ser conscientes de los innumerables problemas que tienen los estudiantes de nuestra facultad para obtener información, formación, acompañamiento, seguimiento o inclusión en cuestiones que pueden afectar de una forma directa en sus actividades académica cotidianas y en su formación integral que reciben en nuestra facultad. La falta de una unidad o servicio centralizado para satisfacer estas necesidades ha sido aún más patente desde la pandemia. En la Facultad de Ciencias Biológicas se realizan multitud de actividades relacionadas con estas iniciativas y que son desconocidas por gran parte de la comunidad universitaria. Las acciones que se vienen realizando desde la facultad de Ciencias Biológicas estas dispersas entre distintos servicios y vicedecanatos (Vicedecanato de Calidad, Innovación y Sostenibilidad, Vicedecanato de Estudiantes, Practicas Externas y Movilidad, Vicedecanato de Estudios, Coordinadora de Grado, Oficina Erasmus, Vicedecanato de Investigación, Secretaría Académica, Delegación de Estudiantes, Oficina de Diversidad, etc.). En este sentido, con este proyecto pretendemos potenciar, sincronizar, coordinar y dar visibilidad a todas estas, mostrando la inmensa utilidad que suponen para nuestros estudiantes, cómo influyen en la mejora de sus actividades académicas curriculares y extracurriculares y su proyección hacia el mundo laboral. Analizaremos cómo cada una de estas actividades influyen positivamente generando una retroalimentación entre los distintos grupos de participantes del proyecto: Estudiantes, Profesores y Personal de Administración y Servicios. Todo ello, será evaluado cualitativa y cuantitativamente mediante la elaboración de encuestas a cada uno de los sectores y los comentarios y evaluaciones que el programa Docentia nos pueda aportar. La finalidad, por tanto, de este proyecto es crear de forma integrativa un Servicio de Orientación Universitario (SOU) para los estudiantes de nuestra facultad, donde se engloben todas las actividades de acompañamiento y seguimiento que venimos realizando, junto con otras que puedan surgir. Todo ello permitirá mejorar la integración y el desenvolvimiento de nuestros estudiantes en el centro mediante su participación en distintas acciones que, a su vez, redundarán en un mejor aprovechamiento de los recursos del centro, una mejora curricular y, en último término, facilitarán su proyección laboral. Este proyecto, también tiene por objetivo solventar la necesidad existente de dar visibilidad a las actividades de acompañamiento y seguimiento de estudiantes que los distintos colectivos de la facultad realizan, con la finalidad de mejorar su aprovechamiento y su optimización a través un análisis de fortalezas y debilidades, lo que nos permitirá generar futuras nuevas acciones que se integrarán en el SOU de la Facultad de Ciencias Biológicas.UCMDecanatoDepto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasFALSEsubmitte