110 research outputs found

    Introducing M-GCTA a Software Package to Estimate Maternal (or Paternal) Genetic Effects on Offspring Phenotypes

    Get PDF
    There is increasing interest within the genetics community in estimating the relative contribution of parental genetic effects on offspring phenotypes. Here we describe the user-friendly M-GCTA software package used to estimate the proportion of phenotypic variance explained by maternal (or alternatively paternal) and offspring genotypes on offspring phenotypes. The tool requires large studies where genome-wide genotype data are available on mother- (or alternatively father-) offspring pairs. The software includes several options for data cleaning and quality control, including the ability to detect and automatically remove cryptically related pairs of individuals. It also allows users to construct genetic relationship matrices indexing genetic similarity across the genome between parents and offspring, enabling the estimation of variance explained by maternal (or alternatively paternal) and offspring genetic effects. We evaluated the performance of the software using a range of data simulations and estimated the computing time and memory requirements. We demonstrate the use of M-GCTA on previously analyzed birth weight data from two large population based birth cohorts, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Norwegian Mother and Child Cohort Study (MoBa). We show how genetic variation in birth weight is predominantly explained by fetal genetic rather than maternal genetic sources of variation

    A CLEC16A variant confers risk for juvenile idiopathic arthritis and anti-cyclic citrullinated peptide antibody negative rheumatoid arthritis

    Get PDF
    Objective Variants in CLEC16A have conferred susceptibility to autoimmune diseases in genome-wide association studies. The present work aimed to investigate the locus' involvements in juvenile idiopathic arthritis (JIA) and further explore the association with rheumatoid arthritis (RA), type 1 diabetes (T1D) and Addison's disease (AD) in the Norwegian population. Methods Three single nucleotide polymorphisms (SNPs) were genotyped in patients with RA (n=809), JIA (n=509), T1D (n=1211) and AD (n=414) and in healthy controls (n=2149). Results All diseases were associated with CLEC16A, but with different SNPs. The intron 22 SNP, rs6498169, was associated with RA (p=0.006) and JIA (p=0.016) and the intron 19 SNPs, rs12708716/rs12917716, with T1D (p=1×10−5) and AD (p=2×10−4). The RA association was confined to the anti-cyclic citrullinated peptide antibody (anti-CCP) negative subgroup (p=2×10−4). Conclusion This is the first report of a CLEC16A association with JIA and a split of the RA association according to anti-CCP status. Different causative variants underlie the rheumatic versus the organ specific diseases

    Fucosylated AGP glycopeptides as biomarkers of HNF1A-Maturity onset diabetes of the young

    Get PDF
    Aims: We previously demonstrated that antennary fucosylated N-glycans on plasma proteins are regulated by HNF1A and can identify cases of Maturity-Onset Diabetes of the Young caused by HNF1A variants (HNF1A-MODY). Based on literature data, we further postulated that N-glycans with best diagnostic value mostly originate from alpha-1-acid glycoprotein (AGP). In this study we analyzed fucosylation of AGP in subjects with HNF1A-MODY and other types of diabetes aiming to evaluate its diagnostic potential. Methods: A recently developed LC-MS method for AGP N-glycopeptide analysis was utilized in two independent cohorts: a) 466 subjects with different diabetes subtypes to test the fucosylation differences, b) 98 selected individuals to test the discriminative potential for pathogenic HNF1A variants. Results: Our results showed significant reduction in AGP fucosylation associated to HNF1A-MODY when compared to other diabetes subtypes. Additionally, ROC curve analysis confirmed significant discriminatory potential of individual fucosylated AGP glycopeptides, where the best performing glycopeptide had an AUC of 0.94 (95% CI 0.90–0.99). Conclusions: A glycopeptide based diagnostic tool would be beneficial for patient stratification by providing information about the functionality of HNF1A. It could assist the interpretation of DNA sequencing results and be a useful addition to the differential diagnostic process.publishedVersio

    The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants

    Get PDF
    Postponed access: the file will be accessible after 2019-10-13Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc- 1,3(Fuc- 1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool ofCELimmunoprecipitatedfromhumanpancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject’s FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas,CELis a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.publishedVersio

    Maternal microchimerism in cord blood and risk of childhood-onset type 1 diabetes

    Get PDF
    Background Maternal microchimerism (MMc), the transmission of small quantities of maternal cells to the fetus, is relatively common and persistent. MMc has been detected with increased frequency in the circulation and pancreas of type 1 diabetes (T1D) patients. We investigated for the first time whether MMc levels at birth predict future T1D risk. We also tested whether cord blood MMc predicted MMc in samples taken at T1D diagnosis. Methods Participants in the Norwegian Mother and Child Cohort study were human leukocyte antigen (HLA) class II typed to determine non‐inherited, non‐shared maternal alleles (NIMA). Droplet digital (dd) polymerase chain reaction (PCR) assays specific for common HLA class II NIMA (HLADQB1*03:01, *04:02, and *06:02/03) were developed and validated. MMc was estimated as maternal DNA quantity in the fetal circulation, by NIMA specific ddPCR, measured in cord blood DNA from 71 children who later developed T1D and 126 controls within the cohort. Results We found detectable quantities of MMc in 34/71 future T1D cases (48%) and 53/126 controls (42%) (adjusted odds ratio [aOR] 1.27, 95% confidence interval (CI) 0.68‐2.36), and no significant difference in ranks of MMc quantities between cases and controls (Mann‐Whitney P = .46). There was a possible association in the NIMA HLA‐DQB1*03:01 subgroup with later T1D (aOR 3.89, 95%CI 1.05‐14.4). MMc in cord blood was not significantly associated with MMc at T1D diagnosis. Conclusions Our findings did not support the hypothesis that the degree of MMc in cord blood predict T1D risk. The potential subgroup association with T1D risk should be replicated in a larger cohort

    The Chromosome 9p21 CVD-and T2D-Associated Regions in a Norwegian Population (The HUNT2 Survey)

    Get PDF
    Background. Two adjacent regions upstream CDKN2B on chromosome 9p21 have been associated with type 2 diabetes (T2D) and progression of cardiovascular disease (CVD). The precise location and number of risk variants have not been completely delineated and a possible synergistic relationship between the adjacent regions is not fully addressed. By a population based cross-sectional case-control design, we genotyped 18 SNPs upstream of CDKN2B tagging 138 kb in and around two LD-blocks associated with CVD and T2D and investigated associations with T2D, angina pectoris (AP), myocardial infarction (MI), coronary heart disease (CHD; AP or AMI), and stroke using 5,564 subjects from HUNT2. Results. Single point and haplotype analysis showed evidence for only one common T2D risk haplotype (rs10757282|rs10811661: OR = 1.19, = 2.0 × 10 −3 ) in the region. We confirmed the strong association between SNPs in the 60 kb CVD region with AP, MI, and CHD ( < 0.01). Conditioning on the lead SNPs in the region, we observed two suggestive independent single SNP association signals for MI, rs2065501 ( = 0.03) and rs3217986 ( = 0.04). Conclusions. We confirmed the association of known variants within the 9p21 interval with T2D and CHD. Our results further suggest that additional CHD susceptibility variants exist in this region

    Genetic liability for schizophrenia and childhood psychopathology in the general population

    Get PDF
    Abstract Genetic liability for schizophrenia is associated with psychopathology in early life. It is not clear if these associations are time dependent during childhood, nor if they are specific across different forms of psychopathology. Using genotype and questionnaire data on children (N = 15 105) from the Norwegian Mother, Father and Child Cohort Study, we used schizophrenia polygenic risk scores to test developmental stability in associations with measures of emotional and behavioral problems between 18 months and 5 years, and domain specificity in associations with symptoms of depression, anxiety, conduct problems, oppositionality, inattention, and hyperactivity at 8 years. We then sought to identify symptom profiles—across development and domains—associated with schizophrenia polygenic liability. We found evidence for developmental stability in associations between schizophrenia polygenic risk scores and emotional and behavioral problems, with the latter being mediated specifically via the rate of change in symptoms (β slope = 0.032; 95% CI: 0.007–0.057). At age 8, associations were better explained by a model of symptom-specific polygenic effects rather than effects mediated via a general psychopathology factor or by domain-specific factors. Overall, individuals with higher schizophrenia polygenic risk scores were more likely (OR = 1.310 [95% CIs: 1.122–1.528]) to have a profile of increasing behavioral and emotional symptoms in early childhood, followed by elevated symptoms of conduct disorder, oppositionality, hyperactivity, and inattention by age 8. Schizophrenia-associated alleles are linked to specific patterns of early-life psychopathology. The associations are small, but findings of this nature can help us better understand the developmental emergence of schizophrenia

    Prenatal iron exposure and childhood type 1 diabetes

    Get PDF
    Acknowledgements: We are grateful to all the participating families in Norway who take part in this on-going cohort study. We thank Dr. Maria Vistnes at Diakonhjemmet Hospital, Oslo, Norway for help with cytokine assays, PM Ueland and Ø Midttun at BEVITAL, Bergen, Norway, for neopterin and KTR assay, and Kathleen Gillespie at Bristol University, UK for confirmatory HLA genotyping. The Norwegian Mother and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NIEHS (contract no N01-ES-75558), NIH/NINDS (grant no. 1 UO1 NS 047537-01 and grant no. 2 UO1 NS 047537-06A1). The sub-study was funded by a research grant from the Research Council of Norway. The Norwegian Childhood Diabetes Registry is financed by the South-Eastern Norway Regional Health Authority. Dr London was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences. Dr Størdal was supported by an unrestricted grant from Oak Foundation, Geneva, Switzerland.Peer reviewedPublisher PD

    Parental Smoking and Risk of Childhood-onset Type 1 Diabetes

    Get PDF
    Background: A few prospective studies suggest an association between maternal smoking during pregnancy and lower risk of type 1 diabetes. However, the role of unmeasured confounding and misclassification remains unclear. Methods: We comprehensively evaluated whether maternal smoking in pregnancy predicts lower risk of childhood-onset type 1 diabetes in two Scandinavian pregnancy cohorts (185,076 children; 689 cases) and a Norwegian register-based cohort (434,627 children; 692 cases). We measured cord blood cotinine as an objective marker of nicotine exposure during late pregnancy in 154 cases and 476 controls. We also examined paternal smoking during pregnancy, in addition to environmental tobacco smoke exposure the first 6 months of life, to clarify the role of characteristics of smokers in general. Results: In the pregnancy cohorts, maternal smoking beyond gestational week 12 was inversely associated with type 1 diabetes, pooled adjusted hazard ratio (aHR) 0.66 (95% CI = 0.51, 0.85). Similarly, in the Norwegian register-based cohort, children of mothers who still smoked at the end of pregnancy had lower risk of type 1 diabetes, aHR 0.65 (95% CI = 0.47, 0.89). Cord blood cotinine >=30 nmol/L was also associated with reduced risk of type 1 diabetes, adjusted odds ratio 0.42 (95% CI = 0.17, 1.0). We observed no associations of paternal smoking during pregnancy, or environmental tobacco smoke exposure, with childhood-onset type 1 diabetes. Conclusion: Maternal sustained smoking during pregnancy is associated with lower risk of type 1 diabetes in children. This sheds new light on the potential intrauterine environmental origins of the disease

    The Norwegian Mother, Father, and Child cohort study (MoBa) genotyping data resource: MoBaPsychGen pipeline v.1

    Get PDF
    BACKRGROUND: The Norwegian Mother, Father, and Child Cohort Study (MoBa) is a population-based pregnancy cohort, which includes approximately 114,500 children, 95,200 mothers, and 75,200 fathers. Genotyping of MoBa has been conducted through multiple research projects, spanning several years; using varying selection criteria, genotyping arrays, and genotyping centres. MoBa contains numerous interrelated families, which necessitated the implementation of a family-based quality control (QC) pipeline that verifies and accounts for diverse types of relatedness. METHODS: The MoBaPsychGen pipeline, comprising pre-imputation QC, phasing, imputation, and post-imputation QC, was developed based on current best-practice protocols and implemented to account for the complex structure of the MoBa genotype data. The pipeline includes QC on both single nucleotide polymorphism (SNP) and individual level. Phasing and imputation were performed using the publicly available Haplotype Reference Consortium release 1.1 panel as a reference. Information from the Medical Birth Registry of Norway and MoBa questionnaires were used to identify biological sex, year of birth, reported parent-offspring (PO) relationships, and multiple births (only available in the offspring generation). RESULTS: In total, 207,569 unique individuals (90% of the unique individuals included in the study) and 6,981,748 SNPs passed the MoBaPsychGen pipeline. The relatedness checks performed throughout the pipeline allowed identification of within-generation and across-generation first-degree, second-degree, and third-degree relatives. The individuals passing post-imputation QC comprised 64,471 families ranging in size from singletons to 84 unique individuals (singletons are included as families as other family members may not have been genotyped, imputed, or passed post-imputation QC). The relationships identified include 287 monozygotic twin pairs, 22,884 full siblings, 117,004 PO pairs, 23,299 second-degree relative pairs, and 10,828 third-degree relative pairs. DISCUSSION: MoBa contains a highly complex relatedness structure, with a variety of family structures including singletons, PO duos, full (mother, father, child) PO trios, nuclear families, blended families, and extended families. The availability of robustly quality-controlled genetic data for such a large cohort with a unique extended family structure will allow many novel research questions to be addressed. Furthermore, the MoBaPsychGen pipeline has potential utility in similar cohorts
    • …
    corecore