4 research outputs found

    Roles of sudden stratospheric warming events and energetic particle precipitation in polar middle atmosphere : odd nitrogen and ozone

    Get PDF
    Odd nitrogen (NOx = N + NO + NO2) in the polar regions is mainly produced in the upper atmosphere through ionization processes by solar extreme ultraviolet radiation, soft X-rays and high energy particles originating from the space. During periods of high geomagnetic activity, normally close to the solar maximum, energetic particle precipitation (EPP) provides an in-situ source of NOx also in the middle atmosphere. Understanding the behaviour of NOx in the middle atmosphere is of great importance due to its capability to act as a catalyst in chemical reaction cycles destroying ozone in the stratosphere. This work considers EPP in the form of solar proton events (SPEs). Atmospheric dynamics play an important role in determining the distributions of long-lived trace gases in the middle atmosphere. The main loss mechanism for NOx is photolysis at the upper stratospheric and mesospheric altitudes, leading to long photochemical lifetime of NOx during the dark polar winter. NOx in the middle atmosphere, also if produced in-situ due to SPEs, is therefore affected by atmospheric dynamics, and transported from the mesosphere-lower hermosphere (MLT) region down to the middle atmosphere. This descent phenomenon can be intensified in the aftermath of sudden stratospheric warmings (SSWs), which are dynamical phenomena able to affect a wide range of altitudes in the Northern polar region atmosphere. The enhanced downward transport of NOx can thus strengthen the NOx-ozone connection in the stratosphere. In this work we used both space born observations from several satellite instruments and a chemistry transport model in the examination of the SSW and SPE caused effects in the stratosphere and mesosphere. The scientific objectives of this work were to find out the individual and combined effects of SSWs and SPEs on the NOx and ozone balance in the Northern middle atmosphere, and assess the relative contributions of dynamics (SSWs) and in-situ production of NOx (SPEs) on ozone in the stratosphere. The results showed dramatic increases in NOx in the middle atmosphere, even by a factor of 50, following both periods of enhanced NOx descent in connection with SSWs and in-situ production of NOx due to SPEs. A clear long-term (order of months) decrease in stratospheric ozone (10-90 %), coinciding with the enhanced amounts of NOx, was evident and affected mostly by dynamics in the upper stratosphere. The results of this work emphasize the importance of in-situ production of NOx (SPEs) on the ozone balance in the upper stratosphere, but also the key role of dynamics (SSWs) in transporting the SPE effect to even lower altitudes and its capability to strengthen the effect

    HEPPA-II model-measurement intercomparison project : EPP indirect effects during the dynamically perturbed NH winter 2008-2009

    Get PDF
    We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx D NO+NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMO-NIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NO x tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with mediumtop models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of- the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.Peer reviewe

    HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009

    Get PDF
    We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx  =  NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models\u27 gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions

    HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008/2009

    No full text
    We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3d Chemistry Transport model (3dCTM), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modeling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20%. Larger discrepancies of a few model simulations could be traced back either to the impact of the models’ gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa) being likely caused by an overestimation of descent velocities. On the other hand, upper mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too slow descent and hence too low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.ISSN:1680-7375ISSN:1680-736
    corecore