7 research outputs found

    “Quem ensina também aprende” : a formação pela prática de professores primários na província do Paraná

    Full text link

    Estimates for Genetic Variance Components in Reciprocal Recurrent Selection in Populations Derived from Maize Single-Cross Hybrids

    No full text
    This study was carried out to obtain the estimates of genetic variance and covariance components related to intra- and interpopulation in the original populations (C0) and in the third cycle (C3) of reciprocal recurrent selection (RRS) which allows breeders to define the best breeding strategy. For that purpose, the half-sib progenies of intrapopulation (P11 and P22) and interpopulation (P12 and P21) from populations 1 and 2 derived from single-cross hybrids in the 0 and 3 cycles of the reciprocal recurrent selection program were used. The intra- and interpopulation progenies were evaluated in a 10×10 triple lattice design in two separate locations. The data for unhusked ear weight (ear weight without husk) and plant height were collected. All genetic variance and covariance components were estimated from the expected mean squares. The breakdown of additive variance into intrapopulation and interpopulation additive deviations (στ2) and the covariance between these and their intrapopulation additive effects (CovAτ) found predominance of the dominance effect for unhusked ear weight. Plant height for these components shows that the intrapopulation additive effect explains most of the variation. Estimates for intrapopulation and interpopulation additive genetic variances confirm that populations derived from single-cross hybrids have potential for recurrent selection programs

    Data from: Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials

    No full text
    Breeding for drought tolerance is a challenging task that requires costly, extensive and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance. Here we evaluated the accuracy of genomic selection of additive (A) against additive+dominance (AD) models to predict the performance of untested maize single-cross hybrids for drought tolerance in multi-environment trials. Phenotypic data of five drought-tolerance traits were measured in 308 hybrids in eight trials under water-stressed (WS) and well-watered (WW) conditions over two years and two locations in Brazil. Hybrids’ genotypes were inferred based on their parents’ genotypes (inbred lines) using single nucleotide polymorphism data obtained via genotyping-by-sequencing. GS analyses were performed using genomic best linear unbiased prediction by fitting a factor analytic (FA) multiplicative mixed model. Results showed differences in the predictive accuracy between A and AD models for the five traits under consideration in both water conditions. For grain yield (GY), the AD model doubled the predictive accuracy in comparison to the A model. FA framework allowed for investigating the stability of additive and dominance effects across environments, as well as the additive- and dominance-by-environment interactions, with interesting applications for parental and hybrid selection. Prediction performance of untested hybrids using GS that benefit from borrowing information from correlated trials increased 40% and 9% for A and AD models, respectively. These results highlighted the importance of multi-environment trial analysis with GS that incorporate dominance effects into genomic predictions of GY in maize single-cross hybrids
    corecore