459 research outputs found

    Decoherence in a double-slit quantum eraser

    Full text link
    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down conversion process, is prepared in a maximally entangled polarization state. A birefringent double-slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled not gate that couples the polarization with the transversal momentum of these photons. The other photon, that acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wave-like to particle-like behavior of the signal photons crossing the double-slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.Comment: Accepted in Physical Review

    Optical Bell-state analysis in the coincidence basis

    Full text link
    Many quantum information protocols require a Bell-state measurement of entangled systems. Most optical Bell-state measurements utilize two-photon interference at a beam splitter. By creating polarization-entangled photons with spontaneous parametric down-conversion using a first-order Hermite-Gaussian pump beam, we invert the usual interference behavior and perform an incomplete Bell-state measurement in the coincidence basis. We discuss the possibility of a complete Bell-state measurement in the coincidence basis using hyperentangled states [Phys. Rev. A, \textbf{58}, R2623 (1998)].Comment: 5 pages, 5 figure

    Experimental Observation of Quantum Correlations in Modular Variables

    Full text link
    We experimentally detect entanglement in modular position and momentum variables of photon pairs which have passed through DD-slit apertures. We first employ an entanglement criteria recently proposed in [Phys. Rev. Lett. {\bf 106}, 210501 (2011)], using variances of the modular variables. We then propose an entanglement witness for modular variables based on the Shannon entropy, and test it experimentally. Finally, we derive criteria for Einstein-Podolsky-Rosen-Steering correlations using variances and entropy functions. In both cases, the entropic criteria are more successful at identifying quantum correlations in our data.Comment: 7 pages, 4 figures, comments welcom

    Efeito da resistência à antracnose na produtividade de grãos de progênies do feijoeiro.

    Get PDF
    Questiona-se se a seleção realizada para a resistência ao Colletotrichum lindemuthianum contribui para aumentar a eficiência da seleção de linhagens para a produtividade de grãos. Para obter essa resposta foi utilizada a população segregante do cruzamento entre as linhagens de feijão CI107 x BRSMG Madrepérola

    Estabilidade na seleção simultânea de dois caracteres na cultura do feijoeiro.

    Get PDF
    Foi realizado o presente trabalho utilizando dados do ensaio elite, para se estimar a estabilidade das linhagens para os caracteres produtividade de grãos e severidade de mancha angular.CONAFE

    Solubility isotope effects in aqueous solutions of methane

    Get PDF
    The isotope effect on the Henry's law coefficients of methane in aqueous solution (H/D and C-12/C-13 substitution) are interpreted using the statistical mechanical theory of condensed phase isotope effects. The missing spectroscopic data needed for the implementation of the theory were obtained either experimentally (infrared measurements), by computer simulation (molecular dynamics technique), or estimated using the Wilson's GF matrix method. The order of magnitude and sign of both solute isotope effects can be predicted by the theory. Even a crude estimation based on data from previous vapor pressure isotope effect studies of pure methane at low temperature can explain the inverse effect found for the solubility of deuterated methane in water. (C) 2002 American Institute of Physics
    corecore