8 research outputs found

    Perspective of interstitial hydrides of high-entropy alloys for vehicular hydrogen storage

    Get PDF
    The transport sector is an important source of CO2 emissions worldwide, and a transition towards hydrogen-fuelled vehicles is a potential remedy. These vehicles require improvements in storage capacities, which can be realised by forming the interstitial hydrides of High-Entropy Alloys (HEAs) by synthesising single-phase hydrides with a randomised atomic distribution of the metal elements within these alloys. Not only is the randomness of elemental distribution in the hydride essential, so too is the affinity of the individual components towards hydride formation, which drastically improves the prospective storage. By evaluating the composition and properties of the best-performing hydride forming alloys, various parameters strongly influencing hydrogen capacities can be inferred. Herein, the state of literature regarding the parameters with the highest importance for hydrogen sorption in HEAs is discussed for the first time with particular focus on how they may be introduced to storage on-board vehicles

    Development of a new class of stable and adaptable free-standing fibre mats with high room-temperature hydroxide-ion conductivity.

    Get PDF
    For alkaline anion-exchange membrane electrolysers and fuel cells to become a technological reality, hydroxide-ion (OH-) conducting membranes that are flexible, robust, affording high OH- conductivity, and synthesised in a low-cost and scalable way must be developed. In this paper, we engineer a stable, self-supporting, and flexible fibre mat using a low-cost ZIF-8 metal-organic framework composited with ionic liquid tetrabutylammonium hydroxide and widely used polyacrylonitrile as polymeric backbone. We obtain mats with a high intrinsic OH- conductivity for a metal-organic framework-based material already at room temperature, without added ion-conductor polymers. This approach will contribute to the development of low-cost and tuneable ion-conducting membranes

    How to functionalise metal–organic frameworks to enable guest nanocluster embedment

    Get PDF
    We report on the development and verification of an enhanced computational model capable of robust predictions and yielding a single descriptor to the successful embedding of guest nanoclusters into the pores of functionalised metal-organic frameworks. Using the predictions of this model, we have been able to embed Pd nanoclusters in the pores of Br-UiO-66 and show that the embedding of Pd nanoclusters in both (OH)2-UiO-66 and (Cl)2-UiO-66 is not successful. Also, using various independent methods, we identified the strong host-guest interactions that anchor the guest nanoclusters inside the Br-UiO-66 framework which result in the surface modification of said nanoclusters. We demonstrated that the level of this surface modification is a direct function of the framework functional groups. This new approach for the rational design of nanocluster-metal-organic framework systems, and a demonstrated tool box for their characterisation, will promote the exploitation of surface modification of nanoclusters via their embedding into functionalised metal-organic framework pores

    Carbon Dots in Solar-to-Hydrogen Conversion

    No full text
    Solar hydrogen production from catalytic water splitting is one of the many options available to help generate clean power and alleviate the threatening environmental concerns stemming from the use of fossil fuels. During the past decade, carbon dots (CDs) have shown great potential in their application for solar-driven hydrogen production owing to their exceptional photophysical and electrical properties derived from their sp2/sp3 hybridized core structure and rich surface functionality. In this review, we correlate the structural features of CDs with their optical and electronic properties and evaluate key properties for efficient solar energy-conversion applications with an emphasis on photocatalysis and photoelectrocatalysis, to shed some light on designing high performance CD-based photosystems

    Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks

    Get PDF
    A combined theoretical and experimental approach demonstrates that nanocluster embedment into the pores of metal-organic frameworks (MOF) may be influenced by the chemical functionalisation of the MOF. Furthermore, this results in the surface functionalisation of the embedded nanoclusters, highlighting the potential of MOF scaffolds for the design and synthesis novel functional materials

    The sustainable materials roadmap

    Get PDF
    Abstract Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently ‘critical materials’ are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as ‘critical’ by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.European Research Council [ERC-2014-STG H2020 639088; ERC-2017-POC 790518] Engineering and Physical Sciences Research Council [EPSRC EP/R511675/1
    corecore