17 research outputs found
Effect of Sintering Temperature on Metal-Insulator Phase Transition in La1-xCaxMnO3 Perovskites
Lanthanum calcium based perovskites are found to be advantageous for the possible applications in magnetic sensors/reading heads, cathodes in solid oxide fuel cells, and frequency switching devices. In the present investigation La0.3Ca0.7MnO3 perovskites were synthesised through solid state reaction and sintered at four different temperatures such as 900, 1000, 1100 and 1200Ëš C. X-ray powder diffraction pattern confirms that the prepared La0.3Ca0.7MnO3 perovskites have orthorhombic structure with Pnma space group. Ultrasonic in-situ measurements have been carried out on the La0.3Ca0.7MnO3 perovskites over wide range of temperature and elastic constants such as bulk modulus of the prepared La0.3Ca0.7MnO3 perovskites was obtained as function of temperature. The temperature-dependent bulk modulus has shown an interesting anomaly at the metal-insulator phase transition. The metal insulator transition temperature derived from temperature-dependent bulk modulus increases from temperature 352Ëš C to 367Ëš C with the increase of sintering temperature from 900 to 1200Ëš C