8,311 research outputs found

    A novel KIF11 mutation in a Turkish patient with microcephaly, lymphedema, and chorioretinal dysplasia from a consanguineous family.

    Get PDF
    Microcephaly–lymphedema–chorioretinal dysplasia (MLCRD) syndrome is a rare syndrome that was first described in 1992. Characteristic craniofacial features include severe microcephaly, upslanting palpebral fissures, prominent ears, a broad nose, and a long philtrum with a pointed chin. Recently, mutations in KIF11 have been demonstrated to cause dominantly inherited MLCRD syndrome. Herein, we present a patient with MLCRD syndrome whose parents were first cousins. The parents are unaffected, and thus a recessive mode of inheritance for the disorder was considered likely. However, the propositus carries a novel, de novo nonsense mutationinexon2 of KIF11. The patient also had midline cleft tongue which has not previously been described in this syndrome

    Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    Full text link
    Antenna-coupled suspended single carbon nanotubes exposed to 108 GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance stems from the temperature dependence of tunneling into a one-dimensional electron system. The DC voltage is interpreted as a thermovoltage, due to the increased temperature of the electron liquid compared to the equilibrium temperature in the leads

    Photoelectron Diffraction Determination of the Structure of Ultrathin Vanadium Films on Cu(001)

    Get PDF
    X-ray photoelectron diffraction (XPD) and low-energy electron diffraction (LEED) have been used to study the structural properties of V thin films on Cu(001). For room-temperature growth, submonolayer coverages result in (1x1) LEED patterns that evolve to exhibit very diffuse (2x1) structure at approximately 1 monolayer coverage. We do not observe any V forward-focusing enhancements for V films that exhibit either the (1x1) or (2x1) structure, suggesting that these structures are limited to the first 1-2 vanadium layers. At coverages above 1 monolayer, the V films display complex LEED patterns characteristic of four bcc(110) domains. This structure persists to V coverages as high as 100 ML, and the LEED and XPD angular scans suggest that V in these films retain the bulk V lattice constant. These results have important ramifications for predictions of magnetic order in vanadium thin films that typically assume pseudomorphic growth

    MOCVD growth and optical properties of non-polar (11-20) a-plane GaN on (10-12) r-plane sapphire substrate

    Get PDF
    Cataloged from PDF version of article.Non-polar a-plane GaN film with crystalline quality and anisotropy improvement is grown by use of high temperature AlN/AlGaN buffer, which is directly deposited on r-plane sapphire by pulse flows. Compared to the a-plane GaN grown on AIN buffer, X-ray rocking curve analysis reveals a remarkable reduction in the full width at half maximum, both on-axis and off-axis. Atomic force microscopy image exhibits a fully coalesced pit-free surface morphology with low root-mean-square roughness (similar to 1.5 nm). Photoluminescence is carried out on the a-plane GaN grown on r-plane sapphire. It is found that, at low temperature, the dominant emission at similar to 3.42 eV is composed of two separate peaks with different characteristics, which provide explanations for the controversial attributions of this peak in previous studies. (C) 2010 Elsevier B.V. All rights reserved

    Dft And X-ray Study Of Structural, Electronic, Elastic And Optical Properties In Be1–xznxs Alloys Depending On Vegard’s Law

    Get PDF
    Structural, optical and electronic properties and elastic constants of Be1–xZnxS alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement

    Evolution of the mosaic structure in InGaN layer grown on a thick GaN template and sapphire substrate

    Get PDF
    Cataloged from PDF version of article.The InxGa1-xN epitaxial layers, with indium (x) concentration changes between 0.16 and 1.00 (InN), were grown on GaN template/(0001) Al2O3 substrate by metal organic chemical vapour deposition. The indium content (x), lattice parameters and strain values in the InGaN layers were calculated from the reciprocal lattice mapping around symmetric (0002) and asymmetric (10-15) reflection of the GaN and InGaN layers. The characteristics of mosaic structures, such as lateral and vertical coherence lengths, tilt and twist angle and heterogeneous strain and dislocation densities (edge and screw dislocations) of the InGaN epilayers and GaN template layers were investigated by using high-resolution X-ray diffraction (HR-XRD) measurements. With a combination of Williamson-Hall (W-H) measurements and the fitting of twist angles, it was found that the indium content in the InGaN epilayers did not strongly effect the mosaic structures' parameters, lateral and vertical coherence lengths, tilt and twist angle, or heterogeneous strain of the InGaN epilayers

    Metalorganic chemical vapor deposition growth and thermal stability of the AllNN/GaN high electron mobility transistor structure

    Get PDF
    Cataloged from PDF version of article.The AlxIn1-xN barrier high electron mobility transistor (HEMT) structure has been optimized with varied barrier composition and thickness grown by metalorganic chemical vapor deposition. After optimization, a transistor structure comprising a 7 nm thick nearly lattice-matched Al0.83In0.17 N barrier exhibits a sheet electron density of 2.0 x 10(13) cm(-2) with a high electron mobility of 1540 cm(2) V-1 s(-1). AnAl(0.83)In(0.17)N barrier HEMT device with 1 mu m gate length provides a current density of 1.0 A mm(-1) at V-GS = 0 V and an extrinsic transconductance of 242 mS mm(-1), which are remarkably improved compared to that of a conventional Al0.3Ga0.7N barrier HEMT. To investigate the thermal stability of the HEMT epi-structures, post-growth annealing experiments up to 800 degrees C have been applied to Al0.83In0.17N and Al0.3Ga0.7N barrier heterostructures. As expected, the electrical properties of an Al0.83In0.17N barrier HEMT structure showed less stability than that of an Al0.3Ga0.7N barrier HEMT to the thermal annealing. The structural properties of Al0.83In0.17N/GaN also showed more evidence for decomposition than that of the Al0.3Ga0.7N/GaN structure after 800 degrees C post-annealing

    Terahertz magnetic modulator based on magnetically clustered nanoparticles

    Get PDF
    Random orientation of liquid-suspended magnetic nanoparticles (Ferrofluids) gives rise to a zero net magnetic orientation. An external magnetic field tends to align these nanoparticles into clusters, leading to a strong linear dichroism on a propagating wave. Using 10 nm-sized Fe3O4, we experimentally realize a polarization-sensitive magnetic modulator operating at terahertz wavelengths. We reached a modulation depth of 66% using a field as low as 35 mT. The proposed concept offers a solution towards fundamental terahertz magnetic modulators

    Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks

    Full text link
    As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation
    • …
    corecore