135 research outputs found
Genetically programmed retinoic acid deficiency during gastrulation phenocopies most known developmental defects due to acute prenatal alcohol exposure in FASD
Fetal Alcohol Spectrum Disorder (FASD) arises from maternal consumption of alcohol during pregnancy affecting 2%–5% of the Western population. In Xenopus laevis studies, we showed that alcohol exposure during early gastrulation reduces retinoic acid (RA) levels at this critical embryonic stage inducing craniofacial malformations associated with Fetal Alcohol Syndrome. A genetic mouse model that induces a transient RA deficiency in the node during gastrulation is described. These mice recapitulate the phenotypes characteristic of prenatal alcohol exposure (PAE) suggesting a molecular etiology for the craniofacial malformations seen in children with FASD. Gsc+/Cyp26A1 mouse embryos have a reduced RA domain and expression in the developing frontonasal prominence region and delayed HoxA1 and HoxB1 expression at E8.5. These embryos also show aberrant neurofilament expression during cranial nerve formation at E10.5 and have significant FASD sentinel-like craniofacial phenotypes at E18.5. Gsc+/Cyp26A1 mice develop severe maxillary malocclusions in adulthood. Phenocopying the PAE-induced developmental malformations with a genetic model inducing RA deficiency during early gastrulation strongly supports the alcohol/vitamin A competition model as a major molecular etiology for the neurodevelopmental defects and craniofacial malformations seen in children with FASD
Applicability of a short/rapid 13C-urea breath test for Helicobacter pylori: retrospective multicenter chart review study
<p>Abstract</p> <p>Background</p> <p>Carbon labeled urea breath tests usually entail a two point sampling with a 20 to 30-minute gap. Our aim was to evaluate the duration of time needed for diagnosing <it>Helicobacter pylori </it>by the BreathID<sup>® </sup>System.</p> <p>Methods</p> <p>This is a retrospective multicenter chart review study. Test location, date, delta over baseline, and duration of the entire test were recorded. Consecutively <sup>13</sup>C urea breath tests results were extracted from the files over a nine year period.</p> <p>Results</p> <p>Of the 12,791 tests results, 35.1% were positively diagnosed and only 0.1% were inconclusive. A statistically significant difference in prevalence among the countries was found: Germany showing the lowest, 13.3%, and Israel the highest, 44.1%. Significant differences were found in time to diagnosis: a positive diagnosis had the shortest and an inconclusive result had the longest. Overall test duration averaged 15.1 minutes in Germany versus approximately 13 minutes in other countries. Diagnosis was achieved after approximately 9 minutes in Israel, Italy and Switzerland, but after 10 on average in the others. The mean delta over baseline value for a negative diagnosis was 1.03 ± 0.86, (range, 0.9 - 5), versus 20.2 ± 18.9, (range, 5.1 - 159.4) for a positive one.</p> <p>Conclusions</p> <p>The BreathID<sup>® </sup>System used in diagnosing <it>Helicobacter pylori </it>can safely shorten test duration on average of 10-13 minutes without any loss of sensitivity or specificity and with no test lasting more than 21 minutes.</p
What Is a Decision Problem? Designing Alternatives
International audienceThis paper presents a general framework for the design of alternatives in decision problems. The paper addresses both the issue of how to design alternatives within "known decision spaces" and on how to perform the same action within "partially known or unknown decision spaces". The paper aims at providing archetypes for the design of algorithms supporting the generation of alternatives
Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants
International audienceHalopytes are plants able to tolerate high salt concentrations but no clear definition was retained for them. In literature, there are more studies that showed salt-enhanced tolerance to other abiotic stresses compared to investigations that found enhanced salt tolerance by other abiotic stresses in halophytes. The phenomenon by which a plant resistance to a stress induces resistance to another is referred to as cross-tolerance. In this work, we reviewed cross-tolerance in halophytes at the physiological, biochemical, and molecular levels. A special attention was accorded to the cross-tolerance between salinity and organic pollutants that could allow halophytes a higher potential of xenobiotic phytoremediation in comparison with glycophytes
From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management
Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions
How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food
The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations
Antibacterial evaluation of Styrax pohlii and isolated compounds
The antibacterial activity of the compounds egonol (1) and homoegonol (2), of the crude ethanolic extract of Styrax pohlii (Styracaceae) aerial parts (EE), and of its n-hexane (HF), EtOAc (EF), n-BuOH (BF), and hydromethanolic (HMF) fractions was evaluated against the following microorganisms: Streptococcus pneumoniae (ATCC 6305), S. pyogenes (ATCC 19615), Haemophilus influenzae (ATCC 10211), Pseudomonas aeruginosa (ATCC 27853), and Klebsiella pneumoniae (ATCC 10031). The broth microdilution method was used for determination of the minimum inhibitory concentration (MIC) during preliminary evaluation of antibacterial activity. The EE yielded MIC values of 400 µg/mL for S. pneumoniae and P. aeruginosa and 300 µg/mL for H. influenzae. The HF and EF fractions exhibited enhanced antibacterial activity, with MIC values of 200 µg/mL against S. pneumoniae, but only EF displayed activity against H. influenzae (MIC 200 µg/mL). The best MIC value with compounds 1 and 2 (400 µg/mL) was obtained for (1) against S. pneumoniae and P. aeruginosa. Therefore, 1 exhibited weak antibacterial activity against these standard strains
- …