16 research outputs found

    Inactivating KISS1 mutation and hypogonadotropic hypogonadism

    Get PDF
    Gonadotropin-releasing hormone (GnRH) is the central regulator of gonadotropins, which stimulate gonadal function. Hypothalamic neurons that produce kisspeptin and neurokinin B stimulate GnRH release. Inactivating mutations in the genes encoding the human kisspeptin receptor (KISS1R, formerly called GPR54), neurokinin B (TAC3), and the neurokinin B receptor (TACR3) result in pubertal failure. However, human kisspeptin loss-of-function mutations have not been described, and contradictory findings have been reported in Kiss1-knockout mice. We describe an inactivating mutation in KISS1 in a large consanguineous family that results in failure of pubertal progression, indicating that functional kisspeptin is important for puberty and reproduction in humans. (Funded by the Scientific and Technological Research Council of Turkey [TÜBİTAK] and others.)http://www.nejm.org/nf201

    YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress

    Get PDF
    Neonatal diabetes is caused by single gene mutations reducing pancreatic pcell number or impairing beta cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in beta cells. We identified 6 patients from 5 families with homozygous mutations in the MPS gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human beta cell models (YIPF5 silencing in EndoC-beta H1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects beta cells. Loss of YIPF5 function in stem cell-derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and beta cell failure. Partial YIPF5 silencing in EndoC-beta H1 cells and a patient mutation in stem cells increased the beta cell sensitivity to ER stress-induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in beta cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.Peer reviewe

    TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction

    No full text
    The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the post-pubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonatrophins, LH and FSH. We report four human pedigrees with severe congenital gonadotrophin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin(1), a recently identified regulator of gonadotropin-releasing hormone secretion(2). These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest novel approaches to the pharmacological control of human reproduction and sex hormone-related diseases
    corecore