1,391 research outputs found
Measuring processes and the Heisenberg picture
In this paper, we attempt to establish quantum measurement theory in the
Heisenberg picture. First, we review foundations of quantum measurement theory,
that is usually based on the Schr\"{o}dinger picture. The concept of instrument
is introduced there. Next, we define the concept of system of measurement
correlations and that of measuring process. The former is the exact counterpart
of instrument in the (generalized) Heisenberg picture. In quantum mechanical
systems, we then show a one-to-one correspondence between systems of
measurement correlations and measuring processes up to complete equivalence.
This is nothing but a unitary dilation theorem of systems of measurement
correlations. Furthermore, from the viewpoint of the statistical approach to
quantum measurement theory, we focus on the extendability of instruments to
systems of measurement correlations. It is shown that all completely positive
(CP) instruments are extended into systems of measurement correlations. Lastly,
we study the approximate realizability of CP instruments by measuring processes
within arbitrarily given error limits.Comment: v
High stability design for new centrifugal compressor
It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions
Thermal characterization of Li-ion cells using calorimetric techniques
The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial Sony cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC), microcalorimetry was used to measure the time dependence of thermal output, and differential scanning calorimetry (DSC) was used to study the thermal reactivity of the individual components. Thermal decomposition of the anode solid electrolyte interphase (SEI) layer occurred at low temperatures and contributes to the initiation of thermal runaway. Low temperature reactions from 40 C--70 C were observed during the ARC runs that were SOC dependent. These reactions measured in the microcalorimeter decayed over time with power-law dependence and were highly sensitive to SOC and temperature. ARC runs of aged and cycled cells showed complete absence of these low-temperature reactions but showed abrupt exothermic spikes between 105--135 C. These results suggest that during aging the anode SEI layer is decomposing from a metastable state to a stable composition that is breaking down at elevated temperatures
Fidelity trade-off for finite ensembles of identically prepared qubits
We calculate the trade-off between the quality of estimating the quantum
state of an ensemble of identically prepared qubits and the minimum level of
disturbance that has to be introduced by this procedure in quantum mechanics.
The trade-off is quantified using two mean fidelities: the operation fidelity
which characterizes the average resemblance of the final qubit state to the
initial one, and the estimation fidelity describing the quality of the obtained
estimate. We analyze properties of quantum operations saturating the
achievability bound for the operation fidelity versus the estimation fidelity,
which allows us to reduce substantially the complexity of the problem of
finding the trade-off curve. The reduced optimization problem has the form of
an eigenvalue problem for a set of tridiagonal matrices, and it can be easily
solved using standard numerical tools.Comment: 26 pages, REVTeX, 2 figures. Few minor corrections, accepted for
publication in Physical Review
New holomorphically closed subalgebras of -algebras of hyperbolic groups
We construct dense, unconditional subalgebras of the reduced group
-algebra of a word-hyperbolic group, which are closed under holomorphic
functional calculus and possess many bounded traces. Applications to the cyclic
cohomology of group -algebras and to delocalized -invariants of
negatively curved manifolds are given
Measurement schemes for the spin quadratures on an ensemble of atoms
We consider how to measure collective spin states of an atomic ensemble based
on the recent multi-pass approaches for quantum interface between light and
atoms. We find that a scheme with two passages of a light pulse through the
atomic ensemble is efficient to implement the homodyne tomography of the spin
state. Thereby, we propose to utilize optical pulses as a phase-shifter that
rotates the quadrature of the spins. This method substantially simplifies the
geometry of experimental schemes.Comment: 4pages 2 figure
The Japanese model in retrospective : industrial strategies, corporate Japan and the 'hollowing out' of Japanese industry
This article provides a retrospective look at the Japanese model of industrial development. This model combined an institutional approach to production based around the Japanese Firm (Aoki's, J-mode) and strategic state intervention in industry by the Japanese Ministry of International Trade and Industry (MITI). For a long period, the alignment of state and corporate interests appeared to match the wider public interest as the Japanese economy prospered. However, since the early 1990s, the global ambitions of the corporate sector have contributed to a significant 'hollowing out' of Japan's industrial base. As the world today looks for a new direction in economic management, we suggest the Japanese model provides policy-makers with a salutary lesson in tying the wider public interest with those of the corporate sector
Low-energy cross section of the 7Be(p,g)8B solar fusion reaction from Coulomb dissociation of 8B
Final results from an exclusive measurement of the Coulomb breakup of 8B into
7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross
sections are analyzed using a potential model of 8B and first-order
perturbation theory. The deduced astrophysical S_17 factors are in good
agreement with the most recent direct 7Be(p,gamma)8B measurements and follow
closely the energy dependence predicted by the cluster-model description of 8B
by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +-
1.2 (syst) eV b.Comment: 14 pages including 16 figures, LaTeX, accepted for publication in
Physical Review C. Minor changes in text and layou
The spectral function of the omega meson in nuclear matter from a coupled-channel resonance model
We calculate the spectral function of the omega meson in nuclear matter at
zero temperature by means of the low-density theorem. The omega N forward
scattering amplitude is calculated within a unitary coupled-channel effective
Lagrangian model that has been applied successfully to the combined analysis of
pion- and photon-induced reactions. While the peak of the omega spectral
distribution is shifted only slightly, we find a considerable broadening of the
omega meson due to resonance-hole excitations. For omega mesons at rest with
respect to the surrounding nuclear medium, we find an additional width of about
60 MeV at saturation density.Comment: 26 pages, 10 figures, added short discussio
Nonlinear coherent states and Ehrenfest time for Schrodinger equation
We consider the propagation of wave packets for the nonlinear Schrodinger
equation, in the semi-classical limit. We establish the existence of a critical
size for the initial data, in terms of the Planck constant: if the initial data
are too small, the nonlinearity is negligible up to the Ehrenfest time. If the
initial data have the critical size, then at leading order the wave function
propagates like a coherent state whose envelope is given by a nonlinear
equation, up to a time of the same order as the Ehrenfest time. We also prove a
nonlinear superposition principle for these nonlinear wave packets.Comment: 27 page
- …