580 research outputs found

    Instrument teaching in the context of oral tradition : A field study from Bolu, Turkey

    Get PDF
    In almost all industrial and post-industrial societies of the modern age as well as in a majority of developing countries, musical-cultural accumulation is documented via writing, musical notation, and similar audio-visual tools to achieve transmission with minimum information loss. As a consequence of the formation of written culture and widespread use of musical notation, musical works could then be registered on permanent documents to enable transmission not only to the immediately following generations but also to many generations over future centuries. The use of writing and the consequential transmission of music via writing, however, are comparatively new yet noteworthy developments in the long history of humankind.Not

    CORRELATION AND PATH COEFFICIENT ANALYSIS FOR SOME EAR YIELD RELATED TRAITS IN POPCORN (ZEA MAYS VAR. EVERTA)

    Get PDF
    The aim of this study is firstly to determine the suitable observations in popcorn breeding researches. And secondly aim is to identify all the possible interaction between grain yield and yield component in popcorn with correlation and path coefficient analysis. The experiments were designed in a randomized block design with 3 replicates. These experiments were conducted in Samsun, Turkey in 2014 and 2015. The results unveiled a significant and positive correlation between grain yield and the all component. The greatest positive effect on grain yield are yield per ear, grain yield per ear and grain moisture according to the path analysis, respectively. The presented results have demonstrated the potential of privileged of observation yield per ear, grain yield per ear and grain moisture thus increasing yield in popcorn

    Dietary suppression of MHC-II expression in intestinal stem cells enhances intestinal tumorigenesis [preprint]

    Get PDF
    Little is known about how interactions between diet, immune recognition, and intestinal stem cells (ISCs) impact the early steps of intestinal tumorigenesis. Here, we show that a high fat diet (HFD) reduces the expression of the major histocompatibility complex II (MHC-II) genes in ISCs. This decline in ISC MHC-II expression in a HFD correlates with an altered intestinal microbiome composition and is recapitulated in antibiotic treated and germ-free mice on a control diet. Mechanistically, pattern recognition receptor and IFNg signaling regulate MHC-II expression in ISCs. Although MHC-II expression on ISCs is dispensable for stem cell function in organoid cultures in vitro, upon loss of the tumor suppressor gene Apc in a HFD, MHC-II- ISCs harbor greater in vivo tumor-initiating capacity than their MHC-II+ counterparts, thus implicating a role for epithelial MHC-II in suppressing tumorigenesis. Finally, ISC-specific genetic ablation of MHC-II in engineered Apc-mediated intestinal tumor models increases tumor burden in a cell autonomous manner. These findings highlight how a HFD alters the immune recognition properties of ISCs through the regulation of MHC-II expression in a manner that could contribute to intestinal tumorigenesis

    Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes

    Get PDF
    In the male germ cells of placental mammals, 26-30-nt-long PIWI-interacting RNAs (piRNAs) emerge when spermatocytes enter the pachytene phase of meiosis. In mice, pachytene piRNAs derive from ~100 discrete autosomal loci that produce canonical RNA polymerase II transcripts. These piRNA clusters bear 5\u27 caps and 3\u27 poly(A) tails, and often contain introns that are removed before nuclear export and processing into piRNAs. What marks pachytene piRNA clusters to produce piRNAs, and what confines their expression to the germline? We report that an unusually long first exon ( \u3e /= 10 kb) or a long, unspliced transcript correlates with germline-specific transcription and piRNA production. Our integrative analysis of transcriptome, piRNA, and epigenome datasets across multiple species reveals that a long first exon is an evolutionarily conserved feature of pachytene piRNA clusters. Furthermore, a highly methylated promoter, often containing a low or intermediate level of CG dinucleotides, correlates with germline expression and somatic silencing of pachytene piRNA clusters. Pachytene piRNA precursor transcripts bind THOC1 and THOC2, THO complex subunits known to promote transcriptional elongation and mRNA nuclear export. Together, these features may explain why the major sources of pachytene piRNA clusters specifically generate these unique small RNAs in the male germline of placental mammals

    Artificial intelligence assisted patient blood and urine droplet pattern analysis for non‑invasive and accurate diagnosis of bladder cancer

    Get PDF
    Bladder cancer is one of the most common cancer types in the urinary system. Yet, current bladder cancer diagnosis and follow-up techniques are time-consuming, expensive, and invasive. In the clinical practice, the gold standard for diagnosis remains invasive biopsy followed by histopathological analysis. In recent years, costly diagnostic tests involving the use of bladder cancer biomarkers have been developed, however these tests have high false-positive and false-negative rates limiting their reliability. Hence, there is an urgent need for the development of cost-effective, and non-invasive novel diagnosis methods. To address this gap, here we propose a quick, cheap, and reliable diagnostic method. Our approach relies on an artificial intelligence (AI) model to analyze droplet patterns of blood and urine samples obtained from patients and comparing them to cancer-free control subjects.The AI-assisted model in this study uses a deep neural network, a ResNet network, pre-trained on ImageNet datasets. Recognition and classification of complex patterns formed by dried urine or blood droplets under different conditions resulted in cancer diagnosis with a high specificity and sensitivity.Our approach can be systematically applied across droplets, enabling comparisons to reveal shared spatial behaviors and underlying morphological patterns. Our results support the fact that AI-based models have a great potential for non-invasive and accurate diagnosis of malignancies, including bladder cancer

    Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis

    Get PDF
    Genetic lesions that activate KRAS account for approximately 30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles\u27 heel in tumors initiated by oncogenic Kras

    Depletion of TRRAP induces p53-independent senescence in liver cancer by downregulating mitotic genes

    Get PDF
    Hepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer with few effective treatments and the underlying mechanisms that drive HCC pathogenesis remain poorly characterized. Identifying genes and pathways essential for HCC cell growth will aid the development of new targeted therapies for HCC. Using a kinome CRISPR screen in three human HCC cell lines, we identified transformation/transcription domain-associated protein (TRRAP) as an essential gene for HCC cell proliferation. TRRAP has been implicated in oncogenic transformation, but how it functions in cancer cell proliferation is not established. Here, we show that depletion of TRRAP or its co-factor, histone acetyltransferase KAT5, inhibits HCC cell growth via induction of p53- and p21-independent senescence. Integrated cancer genomics analyses using patient data and RNA-sequencing identified mitotic genes as key TRRAP/KAT5 targets in HCC, and subsequent cell cycle analyses revealed that TRRAP- and KAT5-depleted cells are arrested at G2/M phase. Depletion of TOP2A, a mitotic gene and TRRAP/KAT5 target, was sufficient to recapitulate the senescent phenotype of TRRAP/KAT5 knockdown. CONCLUSION: Our results uncover a role for TRRAP/KAT5 in promoting HCC cell proliferation via activation of mitotic genes. Targeting the TRRAP/KAT5 complex is a potential therapeutic strategy for HCC

    Nanoformulated Copper/Zinc Superoxide Dismutase Reduces Adipose Inflammation in Obesity

    Get PDF
    Objective: An intimate association exists between oxidative stress and inflammation. Because adipose tissue (AT) inflammation is intricately linked to metabolic disorders, it was hypothesized that reducing oxidative stress would be effective in ameliorating AT inflammation in obesity. Methods: Wild-type mice were fed a high-fat diet (HF) for 8 weeks followed by a 2-week treatment with nanoformulated copper/zinc superoxide dismutase (NanoSOD). The mice were divided into: 1) chow diet, 2) HF, and 3) HF + NanoSOD. Results: The HF + NanoSOD-treated mice showed a significant decrease in plasma and liver triglycerides when compared with HF-fed mice. Interestingly, NanoSOD reduced the expression of macrophage and inflammatory markers in visceral AT (VAT) and stromal cells derived from VAT. Moreover, the activation of proinflammatory signaling pathways, in particular, the extracellular signal-regulated kinases, was blunted in VAT on NanoSOD treatment. However, markers of oxidative stress were not altered significantly in the HF + NanoSOD group in the experimental conditions. Pretreatment of either macrophages or adipocytes significantly reduced the inflammatory response invoked in an in vitro coculture system, further supporting the role of NanoSOD in inhibiting obesity-linked inflammation. Conclusions: This data suggest that NanoSOD is effective not only in reducing AT macrophage accumulation and AT inflammation but also in promoting triglyceride metabolism in obesity
    • …
    corecore