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Artificial intelligence assisted 
patient blood and urine droplet 
pattern analysis for non‑invasive 
and accurate diagnosis of bladder 
cancer
Ramiz Demir 1, Soner Koc 2,7, Deniz Gulfem Ozturk 1, Sukriye Bilir 3, Halil İbrahim Ozata 4, 
Rhodri Williams 5, John Christy 5, Yunus Akkoc 1, İlker Tinay 6, Cigdem Gunduz‑Demir 2,7,8* & 
Devrim Gozuacik 1,3,8*

Bladder cancer is one of the most common cancer types in the urinary system. Yet, current bladder 
cancer diagnosis and follow-up techniques are time-consuming, expensive, and invasive. In the clinical 
practice, the gold standard for diagnosis remains invasive biopsy followed by histopathological 
analysis. In recent years, costly diagnostic tests involving the use of bladder cancer biomarkers have 
been developed, however these tests have high false-positive and false-negative rates limiting their 
reliability. Hence, there is an urgent need for the development of cost-effective, and non-invasive 
novel diagnosis methods. To address this gap, here we propose a quick, cheap, and reliable diagnostic 
method. Our approach relies on an artificial intelligence (AI) model to analyze droplet patterns of 
blood and urine samples obtained from patients and comparing them to cancer-free control subjects. 
The AI-assisted model in this study uses a deep neural network, a ResNet network, pre-trained on 
ImageNet datasets. Recognition and classification of complex patterns formed by dried urine or blood 
droplets under different conditions resulted in cancer diagnosis with a high specificity and sensitivity. 
Our approach can be systematically applied across droplets, enabling comparisons to reveal shared 
spatial behaviors and underlying morphological patterns. Our results support the fact that AI-based 
models have a great potential for non-invasive and accurate diagnosis of malignancies, including 
bladder cancer.

Abbreviations
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BCa	� Bladder cancer
UCC​	� Urothelial cell carcinoma
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NMIBC	� Non-muscle invasive bladder cancer
AI	� Artificial intelligence
UMAP	� Uniform manifold approximation and projection
AUC​	� Area under the curve
ROC curve	� Receiver operating characteristic curve
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Bladder cancer (BCa), or urothelial carcinoma, is a common malignancy of the urinary tract. More than half 
a million new cases and hundreds of thousands of deaths are recorded globally every year1. BCa is four times 
more common in men than in women2. There are many risk factors predisposing to this cancer type, including 
tobacco smoking, infections, and exposure to various chemicals3,4.

BCa generally originates from the epithelial layer, the urothelium, which covers the inner surface of the blad-
der. According to invasiveness into the detrusor muscle, the muscularis propria of the bladder, BCa is classified 
as muscle-invasive bladder cancer (MIBC) and non-muscle invasive bladder cancer (NMIBC)5. Detailed clas-
sifications consider localization of the cancer to different layers of the bladder wall and further spread: Tumors 
at the carcinoma in situ (Cis or Tis) stage are flat and confined to the mucosa. pTa and T1 indicates confinement 
to mucosa and spread to the lamina propria (submucosa), respectively. pT2a and T2b denotes superficial and 
deep muscle invasion. pT3 tumors reach beyond the muscularis propria into the perivesical fat, and pT4 tumors 
invade adjacent organs and/or anatomical structures6. Unfortunately, approximately 20% of newly diagnosed 
patients present to the clinic as muscle invasive or metastatic cancer7. Due to high recurrence rates after treat-
ment, even patients with non-aggressive disease undergo frequent cystoscopic examinations, which is a costly 
and invasive technique with possible complications.

At least 30 different molecules with BCa biomarker potential have been identified so far, but only a few of 
these markers have been approved for clinical use5,8. Tests that are currently used in the clinic and exploit markers 
include urine cytology, fluorescence in situ hybridization (FISH), Nuclear Matrix Protein (NMP-22) detection, 
BTA stat, BTA TRAK, ImmunoCyt/uCyt+, CertNDx, CxBladder tests9,10. High false positive and false negative 
rates of many of these tests limit the reliability of these diagnostic methods. Moreover, most of these methods 
are expensive. Hence, there is an urgent need for the development of more sensitive, specific, reliable, and cost-
effective tests for the diagnosis of this cancer type.

Medical data can be obtained in a variety of forms and complexity, including clinical data, radiology images, 
pathology results11 electronical health records12, data from wearable sensors13, and more recently in the form 
of omics data14. Combination and interpretation of bulky data produced in healthcare systems sets the need for 
new systematic perspectives benefiting from advances in AI-based analysis methods. Consequently, artificial 
intelligence-(AI-)assisted analysis methods have recently emerged as promising tools for diagnosis of diseases, 
such as Alzheimer’s disease, cancer, diabetes, cardiovascular diseases, and stroke15.

Machine learning is a branch of AI in which computers leverage data to learn and perform a given task rather 
than being explicitly programmed with a predetermined set of rules16. Machine learning and deep learning for 
detection of cancer and therapy evaluation at a single-cell level were used in cell and cancer biology field. For 
instance, based on phenomic analyses, machine learning-assisted method was used to determine defects during 
embryogenesis as well as discriminate non-tumor and tumor cells in different cancer model17–19. Current AI-
based approaches have also been tested by independent research groups for bladder cancer diagnosis, staging 
and grading of tumors, as well as for predicting response to chemotherapy, recurrence, and overall survival20. In 
these studies, imaging, cytology or histopathology data from BCa patients were used and convolutional neural 
networks (CNNs) were used as the most common AI model to classify the medical images21.

Blood and urine samples are among the most prevalent biological specimens used in the clinics for routine 
biochemical and cellular analysis. They are easily obtained from patients and their analysis reveals information 
relevant to patient healthcare. The health status of patients affects the composition, chemical properties, as well 
as physical and rheological properties of blood and urine22,23. Properties of these biological samples may differ 
in BCa patients compared to controls. In addition to passage into blood circulation via tumor vascularization, 
tumor-derived cells and secretions may be released into the urine24. Indeed secretion or release of abnormally 
high levels or forms of specific proteins might positively correlate with BCa24.

Changes in blood fluidity are determined by factors such as plasma viscosity, clotting, erythrocyte aggregation 
propensity, red blood cell deformability, adhesion properties of platelets, and leukocytes. Moreover, changes in 
the composition and concentration of plasma components, including various proteins and hormones, vesicles, 
lipids, nucleic acids, inorganic electrolytes, glucose, and other elements, may affect blood composition and 
properties. On the other hand, urine contains not only electrolytes and other chemical molecules, but it may 
also contain cells, such as epithelial cells, erythrocytes, and lymphocytes, as well as sugars, proteins, lipids, and 
nucleic acids25. As expected from its complex organic and inorganic composition, evaporation of deposited drops 
of blood and urine samples may lead to formation of elaborate motifs and patterns26. During the evaporation 
process, distribution of the contents through evaporation dynamics results in the formation of characteristic 
patterns forming various shapes, motifs, shadows, and cracks23,26. Therefore, an AI-based analysis of complex 
patterns formed by dried blood or urine samples from patients suffering from cancer, and their comparison with 
samples from healthy volunteers might be used as a potential cancer diagnosis method.

In this study, droplet pattern analysis of evaporated deposits was performed on samples derived from BCa 
patients and compared to that of samples from healthy control subjects. Our proposed AI-assisted solution (a 
ResNet-18 network pre-trained on the ImageNet dataset) was systematically applied across blood and urine 
droplets27, enabling comparisons to reveal potentially shared spatial behaviors and underlying morphological 
patterns, which may precisely differentiate cancerous samples from controls. Thus, based on this approach, 
the identification of BCa patients was investigated, with the sensitivity and specificity of this method assessed 
statistically.

Results
Patients and control groups
A total of 130 human subjects with BCa diagnosis (110 male and 20 female) were included in the study. The 
control cohort group was composed of 64 volunteers (36 male and 28 female) who had no BCa diagnosis in their 
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lifetime. Clinical and pathological characteristics and tumor classifications of the cohorts were summarized in 
Table 1. The median age of controls and BCa patients were calculated as 53 ± 16 and 66 ± 12, respectively. All 
tumors were diagnosed as urothelial cell carcinoma (UCC). The patient cohort was composed of primary (96 
cases) or recurrent BCa cases (34 cases). According to invasiveness, patients were categorized as muscle non-
invasive (NMIBC, 118 cases) or muscle invasive (MIBC, 12 cases). Tumor grades were also documented. Tumors 
were classified as low grade (61 cases) or high grade (68 cases) in the cohort. Tumor grades were determined 
as Cis (2 cases), pTa (67 cases), pT1 (49 cases), or pT2 (12 cases). Detailed information on patients and control 
cohorts was added as Supplementary Tables S1 and S2, respectively.

Imaging of blood droplets
Whole blood samples were collected from BCa patients and control individuals in EDTA tubes before the 
surgical procedures, and samples were frozen and kept more than 2 h in − 80 °C freezers. Possible effects of 
freeze–thaw cycles were documented (Supplementary Fig. S1). Total hemolysis was achieved after three or more 
cycles (Supplementary Fig. S2). It was observed that droplet patterns (shadows, cracks, patterns, crystals, etc.) 
became consistent after this treatment. Droplet patterns were obtained following deposition of 2 µl blood on clear 
glass microscopy slides and drying droplets at room temperature. Images were taken under a light microscope 
(Fig. 1). 4–6 droplet images were taken for each case, and a total of 775 and 371 images were captured from 
patient samples and controls, respectively. Subsequently, machine learning and AI analyses were performed on 
these image collections.

Table 1.   Clinicopathological distribution of control individuals and bladder cancer patients.

Classification
Sample number and 
gender (Male:Female) Min. age (Years) Max. age (Years) Median age (Years) Std. deviation ( ±)

Samples
Control 64 (36:28) 20 83 53 16

Patient 130 (110:20) 23 89 66 12

Origin of tumor
Primary 96 (82:14) 23 89 66 12

Recurrence 34 (28:6) 40 88 63 12

Invasiveness
NMIBC 118 (100:18) 23 89 66 12

MIBC 12 (10:2) 49 86 67 12

Grade
Low grade 61 (53:8) 23 86 63 12

High grade 68 (56:12) 37 89 68 11

Stage

Cis 2 (2:0)

pTa 67 (59:8) 23 88 63 12

pT1 49 (39:10) 37 89 68 11

pT2 12 (10:2) 49 86 67 12

Figure 1.   Examples of images of whole blood and urine droplet patterns from control individuals and bladder 
cancer patients. KCl, potassium chloride; MgCl2, magnesium chloride.
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Imaging of urine droplets
First morning urine samples were collected from patients or controls and frozen in − 80 °C freezers. Urine samples 
were mixed 1:1 (volume:volume) with either KCl (1 M) or a KCl (1 M) and MgCl2 (1 M) mixture. Droplet pat-
terns were obtained following deposition of 1 µl urine-salt mixture on clear glass microscopy slides and drying 
droplets at room temperature. Images were taken under a light microscope (Fig. 1). 4–6 droplet images were 
taken for each case. A total of 779 and 214 images were captured from the KCl mixed urine solutions of patients 
and controls, respectively. A total of 772 and 215 images were taken from KCl + MgCl2 mixed urine solutions of 
patients and controls, respectively. Machine learning and AI analyses were performed on these image collections.

Feature extraction and CNN classification
In the literature, a common approach of designing a classification network, especially when limited image data 
are available, is to use a pretrained network in the first layers and add customized fully connected layers to the 
end. These pretrained network layers are known to be quite effective to extract distinguishing image features, 
which can be used for various computer vision tasks. The subsequent fully connected layers are task-specific, 
and their weights should be learned on the training set defined for the task at hand. In this study, we followed 
a similar approach (Fig. 2). In each CNN model, we used the ResNet-18 network architecture, pretrained on 
the ImageNet dataset without seeing any blood or urine droplet images27. Then, we trained the subsequent fully 
connected layers on the corresponding training set of blood and urine samples.

We first analyzed the effectiveness of features extracted by the pretrained ResNet-18 network in differentiating 
the patient-derived droplets and the control samples. To this end, the outputs (feature maps) of the last ResNet-18 
layer were visualized. Since these feature maps were high-dimensional, we applied a nonlinear dimensionality 
reduction technique, namely uniform manifold approximation and projection or UMAP, which allows projecting 
a high-dimensional feature space into a two-dimensional space. The UMAP plots of the blood and urine samples 
are presented in Fig. 3. These plots revealed that the image-based patterns of droplet samples clustered together 
within the same class, which would enable accurate classification of the droplet images.

Figure 2.   Schematic overview of the AI-based workflow for BCa patient/control classification on blood and 
urine samples.

Figure 3.   Distributions of the features extracted by the pretrained ResNet-18 network layers for the blood 
and urine droplets. Since these features were high-dimensional, the uniform manifold approximation and 
projection, or UMAP, was used for two-dimensional visualization. In these figures, blue and red dots represent 
the features extracted for the control and patient samples, respectively.
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On the top of these pretrained layers, we separately trained the fully connected layers of three CNN classifiers: 
one on the set of blood samples and the other two on the sets of urine samples prepared adding two different salt 
solutions28. Each CNN was trained to classify a given unlabeled sample into two categories, as either “bladder 
cancer” or “not bladder cancer”. For classifier evaluation (testing part), the five-fold cross-validation technique 
was used due to the risk of overfitting. In this technique, the entire dataset of blood and urine samples was ran-
domly divided into five folds and the testing part was repeated five times. In each trial, four folds (80% of the 
samples) were used to learn the network weights (of the fully connected layers) in the training and the remaining 
fold (20% of the samples), which was not used in the training at all, was used as the test set to calculate the per-
formance metrics. At the end, the average metrics were calculated on the test sets of the five different trials. Note 
that in this technique, each fold will be used as the test set exactly once as an unseen throughout the learning.

The receiver operating characteristic (ROC) curves obtained for each of the five test set folds together with 
the area under these curves (AUC) were shown in Fig. 4. This figure demonstrated that our proposed model 
precisely differentiated the droplet images of cancerous patients and the control group with high AUCs. Table 2 
also reported the sensitivity, specificity, and accuracy, separately for the blood and urine droplet samples. This 
table also revealed that the BCa and control groups were successfully classified for the blood samples, leading to 
high AUC (0.997 ± 0.003), accuracy (0.973 ± 0.016), sensitivity (0.977 ± 0.039), and specificity (0.972 ± 0.014). For 
the urine samples prepared using the KCl solution, the networks also led to high AUC (0.908 ± 0.066), accuracy 
(0.953 ± 0.034), sensitivity (0.987 ± 0.119), and specificity (0.829 ± 0.018). Likewise, the urine samples prepared 
using the KCl + MgCl2 solution were also differentiated with high AUC (0.988 ± 0.021), accuracy (0.748 ± 0.171), 
sensitivity (0.683 ± 0.386), and specificity (0.882 ± 0.171). We then provided the confusion matrices in Table 3 for 
the classification of whole blood, urine (KCl), and urine (KCl + MgCl2) samples together with the class-based 
classification accuracies. These confusion matrices were obtained by first finding the numbers on each test fold 
separately and then accumulating these numbers. Thus, they reflected the test performance. Additionally, in 
Table 3, we reported the class-based accuracies calculated on these accumulated numbers. These confusion matri-
ces and class-based accuracies were consistent with the sensitivity and specificity metrics reported in Table 2.

We conducted an additional experiment using GradCam to get insights into the model’s decision-making 
process29. For the exemplary blood samples from the patient and control groups, the maps generated by Grad-
Cam were showed in Fig. 5. These maps included the highlighted specific areas that influenced the classification 
outcome, enhancing the interpretability of our classification network’s predictions. In these maps, warmer colors 
indicated more prominent regions used by the classifier. As shown in Fig. 5, the proposed model focused on both 
external and internal regions in the samples of the patient group whereas it produced weak signals internally and 

Figure 4.   Receiver operating characteristic (ROC) curves for each of the five test folds. The areas under these 
curves (AUC) are separately reported for each fold together with their average.

Table 2.   Average performance metrics obtained on the test folds together with their standard deviations. 
Metrics obtained on each of the five test folds are reported separately in parentheses. AUC​ area under the 
receiver operating characteristic curve, KCl potassium chloride, MgCl magnesium chloride.

Whole blood Urine—(KCl) Urine—(KCl + MgCl2)

AUC​ 0.997 ± 0.003 (1.000, 1.000, 0.997, 0.998, 
0.992)

0.979 ± 0.016 (0.994, 0.992, 1.000, 0.971, 
0.958)

0.983 ± 0.019 (1.000, 0.951, 0.999, 1.000, 
0.988)

Accuracy 0.973 ± 0.016 (0.996, 0.974, 0.961, 0.979, 
0.956)

0.953 ± 0.034 (0.928, 0.955, 1.000, 0.914, 
0.968)

0.748 ± 0.171 (0.739, 0.808, 0.635, 1.000, 
0.556)

Sensitivity 0.977 ± 0.039 (1.000, 1.000, 0.977, 1.000, 
0.911)

0.987 ± 0.119 (0.754, 0.854, 1.000, 0.686, 
0.850)

0.683 ± 0.386 (1.000, 0.833, 0.470, 1.000, 
0.111)

Specificity 0.972 ± 0.014 (0.994, 0.965, 0.957, 0.973, 
0.971)

0.829 ± 0.018 (1.000, 0.983, 1.000, 0.957, 
0.994)

0.882 ± 0.171 (0.625, 0.786, 1.000, 1.000, 
1.000)



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2488  | https://doi.org/10.1038/s41598-024-52728-7

www.nature.com/scientificreports/

stronger signals externally in the samples of the control group. Note that we did not observe similar behavior 
for the urine samples.

We also evaluated the quality of the extracted features with respect to environmental alterations not linked to 
the biological phenomena using the Deep-Manager tool30. The distribution of the features with respect to their DP 
and the sensitivity to luminance, movement, and out-of-focus alterations for the blood and urine (KCl) droplet 
samples were shown. In Fig. 6 we demonstrated that even with these alterations, there still existed a subset of 
features that showed less than 0.1 sensitivity to these alterations and led to DPs greater than 0.70, which was the 
minimum DP for the features selected based on the original dataset without any alterations. They led to slightly 
worse accuracy results compared to using the original feature set; 0.911 ± 0.076 for whole blood, 0.933 ± 0.029 
for urine (KCI), and 0.711 ± 0.057 for urine (KCl + MgCl2) samples.

Discussion
Bladder cancer is one of the most common urinary tract malignancies. It necessitates costly and invasive diag-
nostic and treatment methods as well as strict follow-up throughout patients’ lifetime. For instance, cystoscopy, 
a commonly used diagnostic method for BCa, is an effective but invasive approach that requires qualified pro-
fessionals and facilities for accurate diagnosis of the cancer31–34. Indeed, false negatives and procedure-related 
complications are not uncommon35–37. On the other hand, there are no specific and reliable serum or urine 
markers for BCa, rendering large screens and field diagnosis difficult tasks. Hence, practical, cost-effective, and 
accurate diagnostic tests need to be developed.

AI-based applications are widely used in modern diagnostic medicine, especially in the fields of radiology 
and pathology. Magnetic resonance imaging (MRI) scans, computed tomography (CT) results, microscopy 

Table 3.   Confusion matrices obtained by first finding the numbers on each test fold separately and then 
accumulating these numbers. Class-based accuracies were calculated on the accumulated numbers.

Predicted

Class-based accuracyControl Patient

Whole blood

 Actual
Control 62 2 0.969

Patient 3 127 0.977

Urine—(KCl)

 Actual
Control 53 11 0.828

Patient 2 128 0.985

Urine—(KCl + MgCl2)

 Actual
Control 56 8 0.875

Patient 41 89 0.685

Figure 5.   Maps of the highlighted specific areas that influenced the classification outcome for the exemplary 
blood samples from the patient and control groups. In these maps, warmer colors indicated more prominent 
regions used by the classifier. These maps were generated by the GradCam tool29.
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images of stained tissue slides, and cytology analyses were among the primary sources of data used in AI-based 
applications20. Images of serum, or urine droplet patterns, have not so far been analyzed in the context of BCa30.

Several studies focused on the physical–chemical properties of evaporation and the consequences/effects on 
the formation of various droplet patterns and their reproducibility38. The behavior of droplet patterns is typical 
in pure liquids but has been found to be more complex in liquids containing multiple components39. We had 
previously analyzed the effects of salt mixtures on droplet pattern formation of bovine serum albumin (BSA) 
solutions and discovered that mixtures induced formation of various complex patterns26. Mimicking biological 
fluids using salt or isolated proteins (like BSA-salt solutions) deciphered how different patterns were forming 
and how specific they were26. In more complex contexts, evaporating liquids will turn into solid or gel, and these 
types of drops generally end up cracking and forming various patterns and morphologies40,41. Further analysis 
using organic solutions or original biological fluids such as blood and urine in their crude forms or in combina-
tion with other chemicals or solutions resulted in the formation of a variety of patterns, suggesting that patterns 
from diseased individuals may differ compared to those from healthy subjects42. Indeed, characteristics of blood 
plasma patterns was different in healthy individuals compared to hepatitis B positive patients43. In addition, 
analysis of anemic patients’ dried whole blood patterns resulted in divergent pattern profiles compared to healthy 
individuals44. Moreover, morphological features of dried blood serum drops from patients with cancer, includ-
ing breast and lung cancer, showed considerable differences45. In another study, dried human plasma patterns 
were used for metastatic carcinoma diagnosis42. However, the use of whole blood patterns for medical diagnosis 
was rarely reported46. Here, we used patterns formed by whole blood droplets for BCa diagnosis. In the case of 
urinary tract diseases, urine reflects changes in kidney and bladder biology, and it was used as another bodily 
fluid for BCa diagnosis.

In our study, an AI-based analysis method was developed using whole blood and urine samples and pre-
dicted BCa with high accuracy, sensitivity and specificity (Table 2). The proposed AI-based approach presented 
a number of advantages for BCa diagnosis. The use of whole blood and urine samples allows for rapid and reli-
able sample preparation and limited sample-to-sample variations. It should also be noted that after initial cycles, 
freeze–thaw cycles did not introduce sample instability and did not affect the results. The AI-based method of 
evaluation introduced standardization and automation of the result interpretation stage, and eliminated user-
related bias. Hence, our approach has the potential to be developed as a rapid and practical BCa diagnosis test.

Convolutional neural networks (CNNs) are architecturally designed to handle spatially correlated data such 
as images21,47. Since AI models have the potential of alleviating many human errors arising from various fac-
tors, such as visual and mental fatigue, stress, and burn-out, their use as an assisted tool may prove beneficial 
to increase correct diagnosis and follow-up20. Transfer learning is another widely used strategy to combat over-
fitting especially when the dataset size is smaller than desired48. Our proposed CNN architecture, which was 
pretrained on the ImageNet dataset containing millions of images, can be systematically applied across blood 
and urine droplet images. This systematic application enables comparisons to reveal shared spatial behaviors and 
underlying morphological features that can precisely differentiate the image patterns specific to cancerous and 
control samples after partially training last layers with the target sample set. As also seen in their ROC curves 
(Fig. 3), these CNN-based models resulted in > 95% AUC for the BCa prediction on the images of whole blood 
and urine samples. Moreover, these models led to 0.977 sensitivity, 0.972 specificity, and 0.973 accuracy values for 

Figure 6.   Distribution of the features with respect to their DP and the sensitivity to luminance, movement, and 
out-of-focus alterations for the blood and urine (KCl) droplet samples. These plots were generated by the Deep 
Manager tool30.
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the blood samples, and 0.987 sensitivity, 0.829 specificity, and 0.953 accuracy values for the urine (KCl) samples 
(Table 2). This indicated the potential use of our proposed model as a candidate clinical assisted tool for BCa 
diagnosis on blood and urine samples.

In conclusion, the proposed AI-based method based on the analysis of blood and urine droplets presented 
herein may serve as a novel diagnosis and follow-up approach for BCa. Our CNN models, with the ResNet-18 
network architecture pretrained on the ImageNet dataset, were used to classify these droplets taken from BCa 
patients and control individuals as either cancerous or non-cancerous with accuracies of 0.973 and 0.953 for 
the blood and urine (KCl) samples, respectively. These results, using a cohort of patients and controls, are very 
promising and indicate that AI-based models and methods might be used as non-invasive and accurate screening 
tests for the diagnosis of bladder cancer.

Material and methods
Collection of whole blood and urine samples
Study included 130 BCa patients admitted to the Urology Department of Marmara University Pendik Train-
ing and Research Hospital between 2018 and 2020. The control group was composed of 64 volunteers who had 
no BCa diagnosis in their lifetime. After informed consent, the blood and urine samples were taken from BCa 
patients before surgery. Blood and urine samples from patients or control subjects were collected in EDTA con-
taining tubes and sterile urine containers (first urine sample of the morning), respectively, and stored in − 80 °C 
freezers until usage.

Preparation of whole blood and urine droplets
The droplet formations were performed with or without solutions composed of salt mixtures (two mixtures, one 
obtained with adding 1 M KCl and the other one with 1 M KCl plus 1 M MgCl2). Salts were dissolved in deion-
ized water as a stock solution (final concentration: 1 molar). Solution composition selection and optimization 
steps were previously described26. Urine samples were mixed with salt solutions at a 1:1 (volume:volume) ratio. 
1 µl urine-salt mixtures or 2 µl blood droplets were deposited on clear glass microscopy slides (Sail Brand, cat. 
no. 7101) and left to dry at room temperature (22–24 °C). Six droplets per patient and control samples were 
prepared and imaged under the light microscope (Olympus BX53). Dried blood and urine droplets were imaged 
in adjusted optimum focus and pixel shifts (at 1360 × 1024 and 4140 × 4096 pixel resolution, respectively) for in-
depth AI-based analysis. These deposited drops were all imaged in the RGB (Red, Green, and Blue) color space 
as well as in grayscale. Images were saved as TIFF files.

Investigating the effects of freeze–thaw cycle
Freeze–thaw testing was conducted by exposing a whole blood sample to a freezing temperature (− 80 °C) for 
24 h. Then, samples were thawed at room temperature and analyzed for possible changes by use of a hemocy-
tometer under an inverted microscope. The cycles were repeated at least four times and dried droplet patterns 
were also documented as microscope images.

Investigation of droplet images by AI
Due to its widespread use and success in machine learning and image analysis, a deep neural network, a 
ResNet-18 network pre-trained on the ImageNet dataset, was systematically applied across the collected whole 
blood and urine droplet images. This enables comparisons to reveal shared spatial behaviors and underlying 
morphological patterns. Images of blood and urine samples were categorized into two main groups: “bladder 
cancer” and “not bladder cancer”. Preparation and processing of data was completed in two steps. First, data 
cleaning was applied to make the image data ready for AI-based analysis. In the second step, the data was pre-
processed, models (networks) were trained, and the results were analyzed. Before training, the blood samples 
were preprocessed by background correction; no postprocessing was used for the urine samples.

CNN architecture and training
We developed three CNN-based models for BCa patient/control classification, one using the blood droplet 
images, and the other two using the urine droplet images prepared adding two different salt mixtures28. Each 
model used the ResNet-18 network architecture with the modified last layers, which were one fully connected 
layer with 512 hidden units followed by rectified linear unit (ReLU) activation and dropout regularization and 
another fully connected layer with the softmax activation. The network parameters (weights) were learned using 
the transfer learning approach. To do so, the weights of the network’s first layers were taken from the ResNet-18 
model pre-trained on the ImageNet dataset and the last fully connected layers were trained from scratch on 
full-size droplet images with the 1360 × 1024 and 4140 × 4096 pixel resolution for the classification of blood and 
urine samples, respectively. To prevent the loss of important spatial context within an image, image tiling was 
not preferred as using the entire image provides a more complete picture of the object or scene being analyzed.

The model was trained for the maximum of 512 epochs, where an early stopping method was used to stop 
training if there was no improvement on the performance of validation images over the last 20 consecutive 
epochs to achieve a better generalization with an unseen sample set. The batch size was selected as 64. The cat-
egorical cross-entropy was used as the loss function. Model parameters were optimized via the Adam optimizer 
with a learning rate of 2 × 10−4 and a 1 × 10−5 L2 weight decay. To mitigate the negative effect of having the class 
imbalance problem, the majority class (BCa patient samples) were under sampled during training to match the 
contribution of the losses defined on the images of the minority class (control samples).
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Statistical analysis
Statistical evaluation of the clinical data that may affect blood and urine samples obtained from BCa patient and 
control subjects were performed by IBM SPSS Statistics (Version 20).

Ethical approval
This study was approved by the Ethics Committee of Marmara University School of Medicine (Protocol No: 
09.2018.367). All procedures were carried out in accordance with the ethical rules and the principles of the 
Declaration of Helsinki. Confirms that informed consent was obtained from all participants.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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