301 research outputs found

    Rapid Detection and Quantification of Triacylglycerol by HPLC–ELSD in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e and \u3ci\u3eChlorella\u3c/i\u3e Strains

    Get PDF
    Triacylglycerol (TAG) analysis and quantification are commonly performed by first obtaining a purified TAG fraction from a total neutral lipid extract using thinlayer chromatography (TLC), and then analyzing the fatty acid composition of the purified TAG fraction by gas chromatography (GC). This process is time-consuming, labor intensive and is not suitable for analysis of small sample sizes or large numbers. A rapid and efficient method for monitoring oil accumulation in algae using high performance liquid chromatography for separation of all lipid classes combined with detection by evaporative light scattering (HPLC–ELSD) was developed and compared to the conventional TLC/GC method. TAG accumulation in two Chlamydomonas reinhardtii (21 gr and CC503) and three Chlorella strains (UTEX 1230, CS01 and UTEX 2229) grown under conditions of nitrogen depletion was measured. The TAG levels were found to be 3–6 % DW (Chlamydomonas strains) and 7–12 % DW (Chlorella strains) respectively by both HPLC–ELSD and TLC/GC methods. HPLC–ELSD resolved the major lipid classes such as carotenoids, TAG, diacylglycerol (DAG), free fatty acids, phospholipids, and galactolipids in a 15-min run. Quantitation of TAG content was based on comparison to calibration curves of trihexadecanoin (16:0 TAG) and trioctadecadienoin (18:2 TAG) and showed linearity from 0.2 to 10 lg. Algal TAG levels \u3e0.5 lg/g DW were detectable by this method. Furthermore TAG content in Chlorella kessleri UTEX 2229 could be detected. TAG as well as DAG and TAG content were estimated at 1.6 % DWby HPLC–ELSD, while it was undetectable by TLC/GC method

    Population genetics reveals bidirectional fish movement across the Continental Divide via an interbasin water transfer

    Get PDF
    Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on the east side of the Continental Divide. We used single nucleotide polymorphisms to characterize population genetic structure in cutthroat trout (Oncorhynchus clarkii) and determine if fish utilize the Grand Ditch as a movement corridor. Samples were collected from two sites on the west side and three sites on the east side of the Continental Divide. We identified two or three genetic clusters, and relative migration rates and spatial distributions of admixed individuals indicated that the Grand Ditch facilitated bidirectional fish movement across the Continental Divide, a major biogeographic barrier. Previous studies have demonstrated ecological impacts of interbasin water transfers, but our study is one of the first to use genetics to understand how interbasin water transfers affect connectivity between previously isolated watersheds. We also discuss implications on native trout management and balancing water demand and biodiversity conservation

    Multilevel human secondary lymphoid immune system compartmentalization revealed by complementary imaging approaches.

    Get PDF
    Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions

    Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations

    Get PDF
    Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R-2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.Endangered Species Recovery Fund (WWF, Environment Canada, Ontario Ministry of Natural Resources)US Bureau of Land ManagementUS Geological SurveyWyoming Game and Fish Departmen

    From Ideal to Practice and Back Again: Beginning Teachers Teaching for Social Justice

    Full text link
    The five authors of this article designed a multicase study to follow recent graduates of an elementary preservice teacher education program into their beginning teaching placements and explore the ways in which they enacted social justice curricula. The authors highlight the stories of three beginning teachers, honoring the plurality of their conceptions of social justice teaching and the resiliency they exhibited in translating social justice ideals into viable pedagogy. They also discuss the struggles the teachers faced when enacting social justice curricula and the tenuous connection they perceived between their conceptions and their practices. The authors emphasize that such struggles are inevitable and end the article with recommendations for ways in which teacher educators can prepare beginning teachers for the uncertain journey of teaching for social justice

    Landscape characteristics influencing the genetic structure of greater sage-grouse within the stronghold of their range: a holistic modeling approach

    Get PDF
    Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high- and low-quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage-grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low-quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33-km-diameter moving windows were preferred, suggesting small-scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape on gene flow.U.S. Bureau of Land ManagementU.S. Geological SurveyWyoming Game and Fish Departmen

    Genetic Applications in Avian Conservation

    Get PDF
    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems
    • 

    corecore