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Abstract
Dispersal can impact population dynamics and geographic variation, and thus, genetic 
approaches that can establish which landscape factors influence population connec-
tivity have ecological and evolutionary importance. Mixed models that account for the 
error structure of pairwise datasets are increasingly used to compare models relating 
genetic differentiation to pairwise measures of landscape resistance. A model selec-
tion framework based on information criteria metrics or explained variance may help 
disentangle the ecological and landscape factors influencing genetic structure, yet 
there are currently no consensus for the best protocols. Here, we develop landscape-
directed simulations and test a series of replicates that emulate independent empirical 
datasets of two species with different life history characteristics (greater sage-grouse; 
eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were 
the best model selection indices and that marginal R2 values were biased toward more 
complex models. The model coefficients for landscape variables generally reflected 
the underlying dispersal model with confidence intervals that did not overlap with zero 
across the entire model set. When we controlled for geographic distance, variables not 
in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study 
helps establish methods for using linear mixed models to identify the features underly-
ing patterns of dispersal across a variety of landscapes.
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1  | INTRODUCTION

Identifying the natural and anthropogenic landscape features that 
promote or impede dispersal provides ecological context for under-
standing how populations are structured across a landscape (Manel, 
Schwartz, Luikart, & Taberlet, 2003). Dispersal is critical to local popu-
lation dynamics (Vance, 1984), and when it results in gene flow (i.e., ef-
fective dispersal), it is essential to maintaining genetic diversity (Epps 
et al., 2005). Thus, a comprehensive understanding of how dispersal 

is influenced by landscape features can provide insight into the eco-
logical factors underlying patterns of geographic variation and inform 
management actions designed to improve or sustain the viability of 
populations. As a result of the importance of dispersal, the last de-
cade has seen a proliferation of quantitative methods that combine 
landscape modeling with genetic data to test hypotheses regarding 
the relative influence of landscape factors on spatial genetic structure 
(Balkenhol, Waits, & Dezzani, 2009; Manel et al., 2003; Storfer et al., 
2007). Despite the large number of available methods, the power of 
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many of these approaches has not been adequately tested nor have 
proper protocols been established.

Pairwise metrics for genetic differentiation and landscape resis-
tance (or cost) are commonly compared to quantify landscape ef-
fects on dispersal (e.g., McRae, 2006; Munshi-South, 2012; Row, 
Blouin-Demers, & Lougheed, 2010; Spear, Balkenhol, Fortin, McRae, 
& Scribner, 2010). Improved model fit between genetic and resis-
tance distance over the fit between genetic and Euclidean distance 
(i.e., isolation-by-distance) suggests a link between the characterized 
landscape and patterns of effective dispersal. However, the best ap-
proach for quantifying model fit and comparing models that repre-
sent different hypotheses is far from clear. This lack of clarity largely 
stems from the nonindependent error structure within pairwise data-
sets that preclude standard information theoretic model selection 
approaches. This has led many to use permutation analyses such as 
Mantel’s tests (e.g., Cushman & Landguth, 2010; Cushman, McKelvey, 
Hayden, & Schwartz, 2006; Schwartz et al., 2009) or multiple regres-
sion of distance matrices (MRDM, Manly, 1986). However, Mantel’s 
test are largely limited to a maximum of three matrices (i.e., two inde-
pendent variables) with a propensity for inflated error rates (Guillot & 
Rousset, 2013), and nonindependence issues for MRDM make model 
selection indices prone to bias (Goldberg & Waits, 2010; Van Strien, 
Keller, & Holderegger, 2012). This limits the use of these approaches 
for disentangling the ecological complexity surrounding spatial genetic 
structure.

Maximum-likelihood population-effects (MLPE) mixed models in-
clude a covariate structure that accounts for the nonindependent error 
structure of pairwise datasets (Clarke, Rothery, & Raybould, 2002). 
Briefly, in the model specification each pairwise data point is consid-
ered an observation, but the lack of independence is incorporated as 
a population-level factor that distinguishes between data points that 
share a common deme (not independent) and those that do not (inde-
pendent). These models have recently emerged as a powerful alterna-
tive that permits information theoretic model selection (Blair, Jiménez 
Arcos, Mendez de la Cruz, & Murphy, 2013; Peterman, Connette, 
Semlitsch, & Eggert, 2014; Phillipsen et al., 2015; Row et al., 2015; 
Van Strien et al., 2012; Zancolli, Rödel, Steffan-Dewenter, & Storfer, 
2014). A comparison of the fit of models in a biologically relevant 
model set can readily accommodate ecological complexity (Burnham 
& Anderson, 2002). However, an evaluation of this approach in the 
context of landscape genetics is lacking an assessment that is required 
to determine which model selection indices are most appropriate for 
distinguishing the importance of landscape variables on dispersal. We 
used a simulation-based analysis, parameterized from extensive em-
pirical data, to test the efficacy of model selection indices and to help 
establish approaches for using MLPE models to identify landscape fea-
tures that impact dispersal.

We developed landscape-directed dispersal simulations in which 
dispersal rates among simulated populations are governed by land-
scape features from real landscapes and produced genetic character-
istics (e.g., genetic diversity and differentiation) similar to empirical 
datasets. Using these simulations, we derived a series of replicates 
where genetic exchange among populations for a wide-ranging 

terrestrial vertebrate (greater sage-grouse [Centrocercus urophasianus] 
across Wyoming, ~121,000 km2) and a less mobile reptile (eastern fox-
snake [Patherophis gloydi] across southwestern Ontario ~3,200 km2) 
was simulated and directed by one or more landscape features. With 
these replicates, we (1) compared the ability of a variety of model se-
lection indices to identify the correct underlying dispersal model (i.e., 
true dispersal model) from among a candidate set of models and (2) 
examined the stability of model coefficients for the landscape vari-
ables in the true dispersal model (i.e., true landscape variables) across 
all models in a model set. Our study assists with the development of 
methods for using MLPE models in a model selection framework to 
test hypotheses and establish the landscape features that are signifi-
cantly impacting patterns of dispersal across landscapes. Further, we 
provide genetic simulation scripts that can be used to test population-
based spatial genetic approaches.

2  | METHODS

2.1 | Landscape-directed dispersal simulations

2.1.1 | Resistance surfaces for greater sage-grouse 
across Wyoming

Maximum-likelihood population-effects models require a set of resist-
ance surfaces, where grid cells in a geographic raster coverage repre-
sent some measure of movement resistance ranging from neutral to 
complete impediment. We developed a set of resistance surfaces de-
scribing dispersal for sage-grouse across Wyoming for the simulation 
model. The first four surfaces were derived from individual landscape 
components (percent cover of sagebrush (Artemisia spp.; SAGE), for-
est (FOR), agricultural fields (AGRIC), and terrain ruggedness (RUGG); 
Table 1) important for sage-grouse functional connectivity across 
this region (Row et al., 2015). All land cover layers had a resolution 
of 300 × 300 m cells, and original land cover sources can be found 
in Row et al. (2015) and Table 1. FOR, AGRIG and RUGG are all in-
hibitors of gene flow (i.e., higher values equal higher resistance) and 
thus resistance increased as the percent cover (AGRIC and FOR) or 
average value (RUGG) increased. SAGE promoted gene flow (i.e., high 
cover equals low resistance), and thus, raw values were reversed by 
subtracting each value from the maximum overall value for that sur-
face and adding 0.1 to avoid zero (Row et al., 2014). This gave the 
lowest resistance to cells with the highest sagebrush cover, and as 
sagebrush cover decreased, resistance increased. For SAGE, we also 
set raw values of less than 4% (approximate error for sagebrush cover 
dataset; Homer, Aldridge, Meyer, & Schell, 2012) to zero, and thus, 
these were set to the highest resistance value in the transformation 
to resistance. Resistance surfaces resampled using moving windows 
to higher spatial resolutions provided a better fit with genetic data 
(Row et al., 2015). Thus, we replaced individual cell values by the 
mean within the moving window of 6.44 km (known region of influ-
ence for habitat selection and movement; Holloran & Anderson, 2005; 
Doherty, Naugle, & Walker, 2010; Fedy et al., 2012). Nonzero values 
were then rank-transformed to normality using the GenABLE package 
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in R (R Core Team 2016). This procedure ranked the resistance values, 
standardized them to values between 0 and 1, and then used these 
values as probabilities to transform the ranks to a standard normal dis-
tribution (qnorm function in R). This standardized both the range and 
distribution of resistance values, avoided skewed distributions, and 
facilitated comparisons among variables (Fig. S1). The standardization 
also was necessary because otherwise pairwise resistances from the 
combined surfaces (i.e., two averaged resistance surfaces) were not 
linear combinations of pairwise resistances derived from each of the 
surfaces individually. For example, given the distribution of values, 
pairwise resistances derived from unstandardized SAGE and RUGG 
were highly correlated with SAGE and very different from those de-
rived from RUGG.

Dispersal patterns for most species are likely influenced by more 
than one landscape feature, and thus, we derived six ecologically 
relevant combined resistance surfaces for Wyoming (A: FOREST 
and SAGE; B: SAGE and AGRIC; C: SAGE and RUGG; D: FOREST 
and AGRIC; E: FOREST and RUGG; and F: RUGG and AGRIC). For 

simplicity, we equally weighted each surface by averaging the two 
individual component resistance surfaces. Averaging the surfaces (as 
opposed to adding) merged the features of both components but kept 
the overall ranges of the resistance values consistent with the single 
variable surfaces (Figure 1). Pairwise resistance values from combined 
surfaces that were added together were perfectly correlated with the 
average surface. Lastly, we used a landscape-free undifferentiated 
surface. It should yield similar results as straight-line distances, but is 
more appropriate because it has the same landscape boundaries as our 
other surfaces (i.e., spatial distances assume an unbounded landscape; 
Lee-Yaw, Davidson, McRae, & Green, 2009; Row et al., 2010). Thus, 
we derived 11 resistance surfaces to simulate dispersal among group-
ings of sage-grouse in our simulations. Thirty-seven populations were 
defined by buffering large leks (~8 km), which are centralized breeding 
sites where males congregate to compete for females and from which 
feather samples were collected (Row et al., 2015). For each of the 
resistance surfaces, we used circuit theory (Hanks & Hooten, 2013; 
McRae, Dickson, Keitt, & Shah, 2008) as implemented in Circuitscape 

Variable Raw value description Source

Sage-grouse

FOR Percent coverage of foresta Northwest ReGAP

SAGE Percent coverage of sagebrush (all 
Artemisia species combined)a

Homer et al. (2012)

AGRIC Percent coverage of irrigated and 
nonirrigated agricultural fieldsa

Fedy et al. (2014)

RUGG Terrain Ruggedness Index: Low values 
represent flat areas, and high values 
represent steep and uneven terraina

Sappington, Longshore, and 
Thompson (2007)

Eastern foxsnake

OPEN Percent coverage of open seminatural 
field and marsh habitata

Row et al. (2010)

WATER Percent coverage of open watera Row et al. (2010)

ROAD Density of roads Row et al. (2010)

RESID Percent coverage of developed land 
(urban and residential)

Row et al. (2010)

All raw values were averaged using a 6.44-km moving window for the sage-grouse dataset and a  
1.5-km moving window for the foxsnake dataset.
aPromoter of gene flow (i.e., high cover equals low resistance), and thus, raw values were reversed by 
subtracting each value from the maximum overall value.

TABLE  1 Raw landscape components 
that were used in the derivation of 
resistance surfaces for sage-grouse and 
eastern foxsnakes

F IGURE  1 Combined resistances surfaces were developed by averaging the resistance values from two surfaces derived from individual 
landscape components. Here, we show the derivation of SAGE (percent sagebrush cover) and RUGG (terrain ruggedness). Locations of sage-
grouse lek groupings are shown as black dots, and the overall distribution of cell values can be found in Fig. S1
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to calculate pairwise resistance between the 37 lek population group-
ings (see Figs S1 and S2 of Supporting information for distribution and 
correlation of resistance surfaces). Pairwise resistance distances were 
used in both empirical datasets, and this approach accounts for the 
size, amount, and quality of connecting habitat and thus offers ad-
vantages over alternatives that rely on a single low-cost path (McRae 
& Beier, 2007). The mean distance between lek groupings was 44 km 
with a range of 19–78 km, which is within the seasonal movement dis-
tances of sage-grouse (Fedy et al., 2012), making direct dispersal links 
between neighboring groups likely. Each of the 11 pairwise resistance 
matrices was used independently as a true landscape dispersal repli-
cate. For all analyses and simulations, all pairwise comparisons were 
included.

2.1.2 | Resistance surfaces for eastern foxsnakes 
across southwestern Ontario

Our second set of simulations were derived to match an empirical pop-
ulation genetic dataset (324 individuals from 17 populations) for east-
ern foxsnakes across a fragmented region in southwestern Ontario 
(Row et al., 2010). Matching Row et al. (2010), we simulated a total 
of 17 populations distributed across the study site. We summarized 
the landscape using four individual landscape components derived in 
Row et al. (2010): percent cover of open seminatural habitat (OPEN), 
open water (WATER), roads (ROAD), and residential and urban de-
velopment (RESID; Table 1). All land cover layers had a resolution of 
40 × 40 m cells with ROAD and RESID assumed to be inhibitors of 
gene flow (i.e., higher percent cover equal to higher resistance). OPEN 
and WATER were assumed to be promoters of gene flow (i.e., high 
percent cover equals low resistance), and thus, raw values for these 
surfaces were reversed by subtracting each value from the maximum 
overall value for that surface and adding 0.1 to avoid zero. We derived 
resistance surfaces by first transforming raw values using a 1.5-km 
moving window (mean of the maximum distance away from hiberna-
tion site during an active season; Row, Blouin-Demers, & Lougheed, 
2012), which replaced individual cell values by the mean within the 
moving window. Again nonzero values were rank-transformed to 
normality. Using the raw-transformed variables resulted in correlated 
pairwise resistance values. After preliminary simulations, we set very 
low densities (<4%) to zero for WATER and OPEN and set zero val-
ues to a high resistance (value of 20) to derive a set of uncorrelated 
predictors for the model selection analysis. See Figs S3 and S4 for 
histograms and correlation plots.

As with the sage-grouse simulations, we also derived seven, eco-
logically relevant, combined resistance surfaces (A: OPEN and ROAD; 
B: OPEN and RESID; C: WATER and ROAD; D: WATER and RESID; E: 
OPEN and WATER; and F: ROAD and RESID) by taking the average of 
two individual component resistance surfaces.

2.1.3 | Dispersal simulations

We used pairwise resistance matrices to simulate dispersal between 
population groupings for sage-grouse and foxsnakes using simuPOP 

(Peng & Amos, 2008; Peng & Kimmel, 2005) modules in Python 2.7.2. 
For each resistance surface, the pairwise dispersal (Dispij; proportion 
of migrants between populations) between populations was derived 
from a negative exponential function: 

where Dispij decreases with increasing resistance (Rij), with α de-
termining the steepness of the decline and β describes the overall 
dispersal rate. We standardized emigration rates (i.e., proportion of 
individuals migrating from population i to population j) so that they 
were consistent among populations. This avoided complete isola-
tion of populations in low-quality areas, which were resulting in pat-
terns different from our observed data (see below). Biologically, this 
is equivalent to individuals in poor habitat having a higher threshold 
and being more willing to travel through high-resistant habitat (Long, 
Diefenbach, Resenberry, Wallingford, & Grund, 2005; Martín et al., 
2008; Matthysen, Adriaensen, & Dhondt, 1995) (see Fig. S5 for a 
graphical representation of the transformation). The relationship be-
tween dispersal and resistance was consistent for all populations (i.e., 
populations with lower resistance between them had greater pairwise 
dispersal).

We simplified the simulations by maintaining the same constant 
population sizes (N) for all populations across generations within a rep-
licate. We simulated microsatellite loci to match the empirical datasets 
(14 for sage-grouse and 11 for foxsnakes); mutation rates (mμ) were 
assumed to be microsatellites (most current landscape genetic liter-
ature is based on surveys of microsatellite markers), mutating under 
a strict stepwise mutation model. In total, our genetic model, which 
required a pairwise resistance matrix and four input parameters (Table 
S1), modulated genetic diversity and differentiation across our simu-
lated populations (Table S2). All simulations were run for 1,000 gener-
ations with the simuPOP modules set to output genotype data, which 
were subsequently analyzed in R (R Core Team 2016).

We ensured that our simulations were biologically relevant by pa-
rameterizing our landscape-directed dispersal simulations to generate 
simulated data with genetic characteristics similar to the empirical 
datasets. This was accomplished for each of the dispersal replicates by 
randomly sampling twenty individuals from each simulated population 
and comparing summary statistics to empirical data (655 individuals 
from 37 sage-grouse populations; 324 individuals from 17 foxsnake 
populations). In total, we used four steps: (1) running preliminary sim-
ulations and determining the range of parameter values that produced 
data approximating the genetic diversity (expected heterozygosity 
[He], observed heterozygosity [Ho], mean number of alleles [MNA] 
and differentiation GST; Takezaki & Nei, 1996) of the observed genetic 
data, (2) running an additional 250 simulations with parameter values 
randomly selected within the range determined in step 1 (Table S1), 
and (3) retaining the top ten parameter sets that produced genetic 
summary statistics closest to observed sage-grouse data (i.e., lowest 
standardized Euclidean distances; Table S2). We then ran an additional 
ten replicates for each of the retained parameter sets for 100 replicate 
simulations (i.e., ten different parameter sets each run 10 times) for 
each of the 11 landscapes (1,100 replicate simulations).

(1)Dispij=−αeRijβ



     |  3755﻿ROW﻿ et  al

2.2 | Assessment of linear mixed models in 
spatial genetics

Maximum-likelihood population-effects models account for noninde-
pendence in a set of n pairwise data points by including a random-
effects term for the nonindependent error structure of pairwise 
datasets (Clarke et al., 2002). In MLPE models, the fixed effects, or 
explanatory variables, are the pairwise landscape resistance matrices. 
The random-effects term accounts for population-level influence by 
setting up the covariance structure such that a proportion (ρτ) of the 
total variance (σ2) is due to the correlation between data points that 
share a common population. Thus, the covariance for n that share 
a common population is ρτσ

2 and zero for those that do not (Clarke 
et al., 2002; Van Strien et al., 2012). The intercept and slopes for the 
fixed effects and ρτ are estimated with restricted maximum likeli-
hood (REML, lme4 package in R), which produces unbiased estimates 
of model variance for mixed-effects models (Clarke et al., 2002; Van 
Strien et al., 2012). Models were also estimated using the MCMCglmm 
package (Hadfield, 2010) with a similar model formulation for the 
random-effects term. MCMC models were run for a total of 100,000 
MCMC iterations (250,000 burn-in, 400 thinning) with convergence 
assessed by comparing coefficients and their intervals (confint.mer-
Mod command; lme4 package) across multiple runs.

We assessed the power of MLPE models by quantifying their 
ability to identify the true dispersal model from alternate models in 
a complete candidate set for each simulated replicate. For both the 
sage-grouse and foxsnake analyses, we considered a candidate model 
set of 16 models with each of our true resistance surfaces represented 
in the set (Table 2). Because model selection approaches generally in-
volve a comparison of model fit and an analysis of the significance and 
stability of model coefficients (Arnold, 2010), we: (1) calculated the 
average percentile for true dispersal candidate models (i.e., true model 
within top X percent of models) across replicates and (2) calculated the 
average coefficient value and associated confidence interval for true 
(i.e., contained in the true resistance surface) and nontrue landscape 
variables in all model sets.

If MLPE models have high power to correctly identify true land-
scape variables, true models should be among the best fitting and 
thus have a low percentile. Also, because each variable represents 
pairwise resistance derived from a resistance surface, there should 
be a positive (i.e., increase in genetic distance with increasing resis-
tance) and significant relationship with genetic distance if the surface 
is an accurate characterization of the landscape from the perspective 
of the species. In circuit theory, resistance between populations will 
increase with increasing distance between nodes regardless of the 
resistance values of a surface. Thus, in the presence of isolation-by-
distance, a variable may be spuriously classified as significant even if 
it does not affect dispersal. To reduce the likelihood of this, we reran 
all candidate models, but included a variable representing isolation-
by-distance (resistance calculated using an undifferentiated land-
scape, UNDIF). Inclusion of this variable should factor out the effects 
of distance and reduce the percentage of nontrue landscape variables 
being significant.

The best model selection criteria for MLPE models are unknown; 
thus, we compared the results of five different criteria designed to 
estimate the overall model fit of a set of candidate models. First, we 
used information theoretic criteria, AIC and BIC, which were esti-
mated from the lme4 models, and DIC values were calculated from 
the MCMC iterations. We used three different AIC variants, but all 
gave similar results, so only AICREML was reported. Next, we used two 
marginal R2 variants, which measured the total variance explained by 
the fixed effects (i.e., pairwise resistance matrices). Unlike traditional 
R2 values, marginal R2 do not necessarily increase with the addition of 

TABLE  2 Model sets for models comparing pairwise genetic 
differentiation (GST) to pairwise resistance distance for landscape 
variables. See Table 1 for description of variables

Model ID Model

Sage-grouse models

1 GSTij
∼UNDIFij

2 GSTij
∼FORij

3 GSTij
∼FORij+RUGGij

4 GSTij
∼FORij+AGRICij

5 GSTij
∼FORij+RUGGij+AGRICij

6 GSTij
∼SAGEij

7 GSTij
∼SAGEij+RUGGij

8 GSTij
∼SAGEij+AGRICij

9 GSTij
∼SAGEij+RUGGij+AGRICij

10 GSTij
∼SAGEij+FORij

11 GSTij
∼SAGEij+FORij+RUGGij

12 GSTij
∼SAGEij+FORij+AGRICij

13 GSTij
∼SAGEij+FORij+RUGGij+AGRICij

14 GSTij
∼RUGGij

15 GSTij
∼AGRICij

16 GSTij
∼RUGGij+AGRICij

Foxsnake models

1 GSTij
∼UNDIFij

2 GSTij
∼OPENij

3 GSTij
∼OPERij+ROADij

4 GSTij
∼OPENij+RESIDij

5 GSTij
∼OPENij+ROADij+RESIDij

6 GSTij
∼WATERij

7 GSTij
∼WATERij+ROADij

8 GSTij
∼WATERij+RESIDij

9 GSTij
∼WATERij+ROADij+RESIDij

10 GSTij
∼OPEN+WATERij

11 GSTij
∼OPEN+WATERij+ROADij

12 GSTij
∼OPEN+WATERij+RESIDij

13 GSTij
∼OPEN+WATERij+ROADij+RESIDij

14 GSTij
∼ROADij

15 GSTij
∼RESIDij

16 GSTij
∼ROADij+RESIDij
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parameters (Orelien & Edwards, 2008); thus, it has been suggested 
that marginal R2 is suitable for use as model selection criteria (Van 
Strien et al., 2012). The first R2 variant considered was R2

β
, which uses 

the F distribution (estimated using Kenward-Rogers approximation: 
KRmodcomp R package; Halekoh & Højsgaard, 2011) to quantify the 
difference in explained variation between models with and without 
fixed effects (Edwards & Muller, 2008). The second, R2

GLMM(m)
, esti-

mates the variance of the fixed effects by calculating the variance of 
fitted values predicted from a model with only fixed effects (Nakagawa 
& Schielzeth, 2013).

We further assessed the top model selection index by calculat-
ing (1) the overall proportion of simulations where the top model was 
the true underlying dispersal model, (2) the proportion of simulations 
where all true variables were in the top selected model, (3) average 
difference between the top selected and true model (i.e., delta values 
for true model), and (4) average correlation between the top selected 
and true model when the true model was not selected. These compar-
isons were conducted using all true underlying dispersal scenarios and 
averaged across replicates.

3  | RESULTS

3.1 | Assessment of linear mixed models in spatial 
genetics

Across all replicates, the percentiles for true dispersal models varied 
depending on the model selection criteria used to compare model fit. 

In our assessment, lower percentiles represented better performance 
of the selection criteria (i.e., greater accuracy). The model selection 
indices AIC and BIC outperformed the other indices and had true 
models within the lowest percentiles for the total model set in both 
simulated datasets (Figure 2). Marginal R2 values had a bias toward 
multivariate models and had much higher percentiles for true models 
than the AIC and BIC model selection criteria. DIC also performed 
poorly and generally had higher percentiles than marginal R2 val-
ues (Figure 2). Considering BIC, which performed the best, the true 
landscape model was always within the top 20% of the 16 models 
in the set when there was only one underlying landscape variable 
(Figure 2a,c). When the underlying true dispersal model contained 
two landscape components, all criteria had higher percentiles for the 
true models (Figure 2b). However, for AIC and BIC, the true model 
was still within the top 20% of models for the majority (~75%) of the 
sage-grouse simulations. In the foxsnake simulations, the AIC and BIC 
similarly had had a superior performance for both univariate and mul-
tivariate models (Figure 2b,d). However, there was a greater drop off 
in performance for the multivariate landscape models, with the true 
models only within the top 30% of models.

The performance of AIC and BIC was very similar, and thus, here 
we only discuss BIC results which performed slightly better. The 
proportion of correctly assigned true models varied widely between 
dispersal scenarios and was not high overall (Table 3). In general, the 
correct assignment proportions and ΔBIC values were much lower for 
single landscape models. When the correct model was not identified, 
the correlation in pairwise resistances derived in the top and true 

F IGURE  2 Range of model selection 
criteria percentiles for (a, c) single and 
multiple (b, c) variable true models with 
lower values indicating the true model 
was found in a higher percentile for a 
given model selection criteria (i.e., lower 
values = greater predictive power). Results 
for simulations emulating the sage-grouse 
and foxsnake datasets are shown
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model was high with an average of 0.77 and 0.71 for the sage-grouse 
and foxsnake datasets, respectively.

When considering single landscape true models, the average coeffi-
cient estimates across models for the true landscape variables (including 
all replicates and models without UNDIF) were positive and nonover-
lapping with zero (Figure 3a,c). As predicted, when UNDIF was included 
as a variable in the model, true landscape variables remained the same, 
whereas nontrue landscape variables were reduced and generally fell 
below zero (Figure 3a,c). For the multilandscape variable dispersal mod-
els, the coefficients for true variables were lower, but the patterns were 
generally consistent (Figure 3b,d). There were, however, exceptions 
in both the sage-grouse and foxsnake simulations. In the sage-grouse 
multilandscape simulations, including UNDIF reduced the FOR variable 
coefficient so that it overlapped zero even when it was a true variable 
in the dispersal model (Figure 3b). In the foxsnake multilandscape sim-
ulations, including UNDIF in the model did not reduce the RESID coef-
ficient as it did with the other nontrue landscape variables (Figure 3d).

For both the sage-grouse and foxsnake simulations, the coefficient 
for UNDIF was similar and positive whether it was the true landscape 
variable or not. However, in both cases the average across models 

decreased below zero when included in a model with true landscape 
variables (Figure 3) and stayed positive when the true landscape vari-
able was the UNDIF landscape.

4  | DISCUSSION

Model selection criteria for MLPE models varied in their capacity to 
identify the true landscape dispersal surface among a candidate set of 
models. Both AIC and BIC outperformed the other tested indices, with 
marginal R2 values being biased toward more complex models in our 
simulations. However, even these model selection indices had diffi-
culty in selecting the true dispersal surface when the dispersal was the 
results of a combination of multiple landscape surfaces. Model coef-
ficients for true landscape variables generally had confidence intervals 
that did not overlap with zero for the entire model set. Controlling 
for geographic distance by including an undifferentiated covariate 
increased model accuracy by reducing the significance of variables 
not included in the true landscape surface driving dispersal. Overall, 
a MLPE approach using univariate models that combined AIC and BIC 

TABLE  3 Performance of model selection analysis with BIC as an indicator showing variable results depending on the underlying simulations

Model
Proportion of correct  
model selection

Proportion tests with all true 
variables in top model Mean ΔBIC

Mean correlation of 
top and true model

Sage-grouse simulations

UNDIF 1.00 1.00 0.00 NA

AGRIC 0.34 1.00 −4.33 0.78

FOR 0.37 0.40 −7.56 0.42

RUGG 0.08 1.00 −9.15 0.83

SAGE 0.00 1.00 −15.00 0.82

COMBA 0.86 0.92 −0.33 0.88

COMBB 0.00 0.06 −16.49 0.78

COMBC 0.05 0.05 −6.67 0.84

COMBD 0.89 0.89 −0.25 0.78

COMBE 0.34 0.34 −4.87 0.66

COMBF 0.07 0.97 −12.71 0.92

Foxsnake simulations

UNDIFF 0.70 0.70 −0.63 0.36

OPEN 1.00 1.00 0.00 NA

ROAD 0.99 1.00 0.00 0.75

RESID 0.64 0.64 −1.48 0.61

WATER 0.91 0.92 −0.25 0.68

COMBA 0.00 0.00 −12.68 0.81

COMBB 0.00 0.00 −7.58 0.83

COMBC 0.00 0.00 −18.82 0.55

COMBD 0.00 0.00 −10.05 0.80

COMBE 0.00 0.00 −8.84 0.87

COMBF 0.00 0.00 −10.43 0.91

The proportion of tests where the top model was the true model, the proportion of simulation where all true variables were in the top model, and average 
ΔBIC values and the correlation in pairwise resistance values between the top and true model are shown. Average correlation was only calculated for tests 
where the top model and true model were not the same.
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selection indices with an examination of coefficient stability gave the 
highest likelihood of correctly identifying the true landscape surfaces 
underlying dispersal.

4.1 | Model selection indices

Some have suggested model selection indices such as AIC and BIC are 
inappropriate for mixed models with different fixed effects that are 
estimated with REML (Verbeke & Molenberghs, 2000). This could be 
problematic, as REML is used for MLPE models (Clarke et al., 2002), 
and thus, Van Strien et al. (2012) suggested instead using R2

β
 to se-

lect the top models. This selection index has subsequently been used 
by others for landscape genetics (Blair et al., 2013; Phillipsen et al., 
2015). However, our results indicate that marginal R2 values are bi-
ased toward more complex models and often resulted in the selection 
of multiparameter models, even when a single landscape component 
was responsible for the underlying dispersal patterns. This is perhaps 
not surprising, as marginal R2 values do not actually decrease with 
overfitting, but fail to increase with the addition of uninformative co-
variates (Orelien & Edwards, 2008). This does not lend itself to being 
an ideal model selection index, and combined with our results, we sug-
gest the use of R2 values alone should not be used to select among 
dispersal models in isolation-by-resistance analysis.

Despite the potential issues, AIC can be informative as a model 
selection index for mixed-model fit with REML (Gurka, 2006), and they 
have been used successfully for model selection with MLPE models 
(Emel & Storfer, 2014; Peterman et al., 2014; Zancolli et al., 2014). 
Indeed, we found that both AIC and BIC were superior to the other 
tested selection indices. In the univariate analyses, the true dispersal 
models were within the top 20% of the model set. However, the per-
centages of correctly identifying the top model and ΔAIC and ΔBIC 
values varied dramatically among the true model surfaces and was 
low overall. When model selection was derived from a single land-
scape variable, the true landscape variable was generally within the 
top model and thus, combining model selection using BIC or AIC with 
coefficient analysis would likely lead to the lowest error rates for our 
simulations.

When the underlying true landscape resistance was built from 
two surfaces, the model selection indices were not as proficient at 
selecting the correct multivariate model. This is likely due to the fact 
we assumed that pairwise resistances derived from the combination 
landscape surfaces are a linear combination of the pairwise resistance 
from each individual landscape. We tested this by fitting models of 
pairwise resistances from combined surfaces with their corresponding 
individual pairwise resistances (e.g., Combine A ~ SAGE + FOREST for 
the sage-grouse resistance). If the surfaces are linear combinations, 

F IGURE  3 Average model coefficients for variables in and not in the true dispersal simulation with UNDIFij included and not included in 
all models (UNDIF only model always had UNDIF included). Mean coefficients and upper and lower confidence intervals are shown, and SDs 
of replicates for single (a, c) variable true models and multivariable (b, d) models. Results for simulations emulating the sage-grouse (a, b) and 
foxsnake (c, d) datasets are shown
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we would predict a strong fitting model with both variables contrib-
uting relatively equally to the model. For the combined sage-grouse 
resistances, this was generally true with an average R2 of 0.98 and 
very similar standardized model coefficients. However, the foxsnake 
resistances, where multivariate models had a greater difficulty with 
combined surfaces, the fit was not as high (average R2 = .83), and in 
some cases, one variable’s contribution to the model outweighed the 
other by as much as a factor of four. This is also supported by the fact 
that in the combined surface simulations, the top models were highly 
correlated with the true models when not correctly chosen.

In our development of resistance surfaces, we made efforts to de-
velop uncorrelated resistance surfaces that could be combined with-
out masking the effects of one of the landscape variables. This might 
be difficult with some empirical datasets, particularly when equal con-
tributions of each landscape are not expected as we simulated here. 
Based on our results, we suggest testing resistances derived from 
multilandscape surfaces against the corresponding single landscape 
surfaces before proceeding with multivariate models. More simply, 
using resistances derived from the combined surfaces in the model 
selection analyses and avoiding multivariate models altogether might 
lead to better results.

4.2 | Coefficient analyses of MLPE models

Many examples of MLPE models in landscape genetics present only 
model selection indices and do not report model coefficients (Blair 
et al., 2013; Peterman et al., 2014; Phillipsen et al., 2015). Our results 
suggest that an analysis of the confidence intervals for landscape vari-
ables can support and add to the model selection results. We found 
that in most cases, the coefficients for true landscape variables were 
positive and did not overlap zero for all models in which they ap-
peared. They were also generally higher than when they were not 
in the underlying dispersal model. However, nontrue variables were 
also significantly positive in many cases. Examination of models that 
control for distance could help address the selection of false-positive 
variables. When we included pairwise resistance values from an undif-
ferentiated landscape, the confidence intervals of nontrue variables 
typically overlapped with zero or became negative. Thus, confirming 
the stability of coefficients for landscape components in top models 
when incorporated into a model that controls for distance will reduce 
the likelihood of falsely identifying variables as influencing gene flow.

4.3 | Future considerations to test and refine 
MLPE approaches

In this study, we used a comparative approach and found relatively 
consistent results across two datasets designed to emulate species 
with vastly different life history characteristics. This implies some gen-
erality to our results and that using AIC or BIC and examining model 
coefficient stability will improve the efficiency of MLPE models and 
reduce error rates. However, we made simplifying assumptions, and 
more research is required to refine the approaches suggested here and 
to estimate and compare potential error rates with other landscape 

genetic approaches. In our simulations, we assumed fixed population 
sizes, nonoverlapping generations, complete population sampling, and 
constant dispersal on the landscape. This is oversimplified from em-
pirical data, and adding variation into any of these parameters would 
obviously introduce noise and make it more challenging to identify the 
true underlying patters. Thus, to quantify meaningful error rates, more 
complex simulations including the addition of noise in each of these 
parameters are needed. Further, comparing the results using differ-
ent sampling strategies (e.g., population vs. individual), types and the 
numbers of genetic markers, and other approaches such as Mantel 
tests and multiple regression on distance matrices (MRDM) would be 
illuminating.

The importance of simulation software that can simulate disper-
sal driven by landscape resistance is seen with CDPOP (Landguth & 
Cushman, 2010), which has been instrumental in testing landscape 
and population genetic assumptions (e.g., Cushman & Landguth, 
2010; Dileo, Rouse, Dávila, & Lougheed, 2013; Landguth et al., 2012; 
Oyler-McCance, Fedy, & Landguth, 2012) or predicting the impacts 
of environmental changes (Row et al., 2014). Here, we have used 
population-based simulations to test model selection indices and co-
efficient analyses. We provided Python and R scripts and a simplified 
tutorial (see Appendix S1) for using our dispersal model to simulate 
genetic exchange between populations based on pairwise resistance 
and to analyze the output using MLPE modeling. We hope that these 
resources will facilitate the use of simulations to test empirical model 
selection analyses or other population-based approaches in spatial 
genetics.
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