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Abstract

Given the significance of animal dispersal to population dynamics and geo-

graphic variability, understanding how dispersal is impacted by landscape pat-

terns has major ecological and conservation importance. Speaking to the

importance of dispersal, the use of linear mixed models to compare genetic dif-

ferentiation with pairwise resistance derived from landscape resistance surfaces

has presented new opportunities to disentangle the menagerie of factors behind

effective dispersal across a given landscape. Here, we combine these approaches

with novel resistance surface parameterization to determine how the distribu-

tion of high- and low-quality seasonal habitat and individual landscape compo-

nents shape patterns of gene flow for the greater sage-grouse (Centrocercus

urophasianus) across Wyoming. We found that pairwise resistance derived from

the distribution of low-quality nesting and winter, but not summer, seasonal

habitat had the strongest correlation with genetic differentiation. Although the

patterns were not as strong as with habitat distribution, multivariate models

with sagebrush cover and landscape ruggedness or forest cover and ruggedness

similarly had a much stronger fit with genetic differentiation than an undiffer-

entiated landscape. In most cases, landscape resistance surfaces transformed

with 17.33-km-diameter moving windows were preferred, suggesting small-scale

differences in habitat were unimportant at this large spatial extent. Despite the

emergence of these overall patterns, there were differences in the selection of

top models depending on the model selection criteria, suggesting research into

the most appropriate criteria for landscape genetics is required. Overall, our

results highlight the importance of differences in seasonal habitat preferences to

patterns of gene flow and suggest the combination of habitat suitability model-

ing and linear mixed models with our resistance parameterization is a powerful

approach to discerning the effects of landscape on gene flow.

Introduction

Animal dispersal has important and well-documented

effects on population dynamics and persistence (e.g.,

Vance 1984; Law et al. 2003; Pergl et al. 2011), as well as

patterns of diversity and population structure (e.g., Ga-

rant et al. 2005; Row et al. 2010). Thus, understanding

the factors that influence effective dispersal (i.e., dispersal

that results in gene flow) across complex landscapes can

reveal the major ecological and evolutionary themes and

inform management actions on how to improve or main-

tain population connectivity. As a result, the last decade

has seen the emergence of landscape genetics, which com-

bines landscape modeling with genetic data to better

understand how landscape features influence functional

connectivity across a given region (Manel et al. 2003;

Storfer et al. 2007). Landscape genetics research suggests

that genetic models that explicitly consider the influences

of natural and anthropogenic features on patterns of pop-

ulation structure can lead to greater ecological insights
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over those that consider spatial distance alone (Holdereg-

ger and Wagner 2008).

The comparison of pairwise genetic differentiation to

landscape resistance metrics or cost between any two

locations is a common approach to quantifying landscape

effects on dispersal (e.g., Row et al. 2010; Munshi-South

2012). If the model fit between genetic and landscape

resistance distances is improved compared to a fit with

straight-line geographic distance, this suggests a link

between the characterized landscape and patterns of effec-

tive dispersal (i.e., dispersal that results in gene flow).

Although this approach is conceptually straightforward,

parameterizing a set of biologically meaningful resistance

surfaces and deriving pairwise resistance distances are

often challenging in complex landscapes (Rayfield et al.

2009; Spear et al. 2010). This problem is further com-

pounded when considering the added effects of different

temporal and spatial scales (Anderson et al. 2010) and

accounting for the dependencies inherent in pairwise

datasets.

One approach to addressing structural complexity is to

synthesize the landscape using multivariate habitat suit-

ability models. We can then use these models to spatially

parse the landscape from low (i.e., high suitability) to

high (i.e., low suitability) dispersal resistance. Thus,

instead of investigating multiple landscape features indi-

vidually, we transform one biologically meaningful surface

and then compare with the genetic data. Generally, resis-

tance values derived from suitability indices have

improved the fit over geographic distance, suggesting the

distribution and quality of habitat is important in driving

gene flow (Laiolo and Tella 2006; Wang et al. 2008; Row

et al. 2010). Despite this link, structural connectivity built

from habitat suitability indices may not always represent

functional connectivity (i.e., gene flow). For example, the

habitat used on a daily basis may be different from the

habitat a species is willing to travel through when dispers-

ing (Ribe et al. 1998; Spear et al. 2010). Ideally, the com-

parison of genetic differentiation to resistance derived

from habitat suitability indices, as well as individual land-

scape components, could potentially provide insight into

where dispersal and daily-use habitat diverge.

The greater sage-grouse (Centrocercus urophasianus;

Bonaparte 1827) is distributed across western North

America, with a range largely consonant with the distri-

bution of sagebrush (Artemisia spp.). With population

reductions occurring across the range of sage-grouse

(Garton et al. 2011), researchers and land managers are

actively studying how to mitigate this decline. Wyoming

contains a large proportion of the remaining individuals

(>35%; Doherty et al. 2010b) and thus represents a sig-

nificant component of their current and, likely, future

range. A recent large-scale habitat assessment using

multiple radio-telemetry datasets was used to derive sea-

sonal (nesting, summer, and winter habitat) resource

selection functions (RSFs) for sage-grouse across Wyo-

ming (Fedy et al. 2014). Their derived seasonal habitat

suitability maps for sage-grouse highlight the importance

of considering a variety of landscape features in evaluat-

ing sage-grouse habitat selection. As of yet, there is no

assessment of how the seasonal habitat distribution, nor

individual landscape components, relates to observed

functional connectivity for sage-grouse across this signifi-

cant portion of their range.

Here, we used linear mixed modeling approaches to

compare the importance of individual landscape compo-

nents and seasonal habitat distribution in driving large-

scale patterns of gene flow for sage-grouse across Wyo-

ming. Specifically, we used resistance surfaces transformed

to multiple operational scales using differently sized mov-

ing windows and parameterized to place an emphasis on

variation in low or high resistance to address the follow-

ing questions: (1) What moving window size and resis-

tance parameterization best characterize functional

connectivity for sage-grouse? (2) Is effective dispersal in

sage-grouse driven by the distribution of habitat prefer-

ences in a particular season? and (3) What is the added

value of using habitat suitability indices over individual

landscape components in landscape genetics? Lastly, the

use of linear mixed models and model selection is a rela-

tively new venture in landscape genetics (Clarke et al.

2002; Pavlacky et al. 2009; Selkoe et al. 2010; Van Strien

et al. 2012). Thus, as a final objective we compare and

contrast the patterns of four different metrics of model

performance and test a method of using standardized

regression coefficients (Gelman 2008) to combine resis-

tance surfaces derived from individual landscape compo-

nents. Overall, our study takes advantage of an extensive

dataset to determine the ecological factors driving func-

tional connectivity for sage-grouse within the stronghold

of their range and establishes protocols for using mixed

models to test dispersal hypotheses across large geo-

graphic extents.

Methods

Genetic diversity and differentiation

The Wyoming Game and Fish Department collected

feather and blood samples from sage-grouse between the

years of 2007 and 2010 across Wyoming and provided

these samples for this study. Most of these samples were

feathers collected noninvasively and well distributed

across lek sites within the state (Fig. 1). Details on sample

collection and selection, as well as genotyping at 14

microsatellite loci and the identification of unique
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individuals, are provided elsewhere (See Appendix S1).

Our final sample size for the analysis (n = 949) repre-

sented all unique individuals that amplified at seven or

more loci.

The majority of the feathers used in the genetic analysis

were collected from leks, and thus, we used these as the

basis for defining our groupings (hereafter “lek group”)

for pairwise analysis. We do not suggest that our group-

ings represent biologically unique populations or manage-

ment units (Waples and Gaggiotti 2006; Palsbøll et al.

2007), but more accurately represent unique sample

groups capturing the heterogeneity within Wyoming. We

derived our population groupings by first identifying leks

with >10 unique individuals and buffering these locations

by 8 km, which represents the mean nest to summer

range movement distance for sage-grouse (Fedy et al.

2012). Any leks with overlapping buffers were combined,

and any individual samples not collected at a lek, but

within a buffer, were included with that grouping. This

resulted in a total of 612 individuals sampled at 35 lek

groups during the breeding season (March–June). This

grouping method excluded two regions that had greater

than ten clustered samples not collected at leks. In order

to include these regions, we added two additional group-

ings (36 and 37 in Table S2), which contained 43 individ-

uals in total. All of these individuals were sampled in the

late summer or fall (August–October), and because aver-

age Euclidean movement distance between nesting and

late summer is only 8 km (Fedy et al. 2012), we expect

these samples to represent breeding populations in the

region even though sampling occurred late in the season.

Overall, our grouping method resulted in 655 individuals

spread among 37 population groupings (Table S1; Fig. 1).

The dataset was very close to complete with missing data

across loci averaging around 2% and the average number

of loci for individuals (13.68) being very close to the

maximum number of loci (14).

For each lek group, we used the R (R Core Team

2014) package adegenet (Jombart 2008) to estimate Hexp,

Hobs, and FIS, and PopGenKit (Paquette 2012) to estimate

allelic richness with jackknifing (1000 replicates; sample

size set to 10). We used the package mmod to estimate

pairwise differentiation using Nei’s GST (Takezaki and Nei

1996) and Jost Dest (Jost 2008). We also used other differ-

entiation statistics within the mmod, but all were highly

correlated.

Resistance surfaces

Although there are many landscape attributes that can

potentially influence functional connectivity, we restricted

our resistance surfaces to three habitat suitability indices

and five major individual landscape components that

have the potential to influence connectivity at this large

spatial extent. The seasonal habitat surfaces were derived

by Fedy et al. (2014), using habitat selection models built

with 14 radio-telemetry datasets for sage-grouse. Briefly,

the radio-telemetry data were divided by season (NEST,

SUMMER, and WINTER) and unique seasonal models

were developed across multiple spatial extents and com-

pared using a model selection approach. Here, we were

interested in large-scale patterns and thus utilized the top

state-wide seasonal models for our analysis (Table 1).

Details on model development and covariates used can be

found in Fedy et al. (2014). The individual landscape

component resistance surfaces were derived from percent

coverage of forest (FOR), all Artemisia sagebrush species

combined (SAGE), and agricultural fields (irrigated and

nonirrigated; AGRIC), as well as from a terrain rugged-

ness index (RUGG) and a road decay function from pri-

mary and secondary paved roads (ROAD). All of the

landscape components were consistent with those used in

Fedy et al. (2014) and are known to influence the move-

ment or habitat use of sage-grouse (see more detailed

descriptions in Table 1). All input layers were originally

30 m2 resolution, but due to computational constraints,

we resampled them to 300 m2 with bilinear interpolation

prior to the moving window analysis. Given that seasonal

movement distances are typically greater than 10 km, it is
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Figure 1. Map of study area delimiting the distribution of genetic

samples from the greater sage-grouse (Centrocercus urophasianus;

Bonaparte 1827) across Wyoming. Black dots represent single or

multiple samples, gray transparent circles represent lek buffers (8 km

radius) used as grouping in group-based analysis, and light gray

polygon is the putative range of sage-grouse across this region.

Coordinates for Albers’ equal-area projection are displayed.
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unlikely that functional connectivity would be influenced

by patterns at resolutions of <300 m2. For some input

layers, high pixel values represented low resistance to dis-

persal (e.g., positive predicted effect on gene flow; see

Table 1) and were reversed by subtracting each value

from the maximum value for that surface (Row et al.

2014) and adding 0.1 to avoid zero values (i.e., absolute

barriers).

Each landscape metric, except roads, was transformed

using three differently sized moving windows that calcu-

lated the average value across the window extent. The

radii of the first two moving windows sizes (1.5 km and

6.44 km) represent known regions of influence for habitat

selection and movement (Holloran and Anderson 2005;

Aldridge and Boyce 2007; Carpenter et al. 2010; Doherty

et al. 2010a; Fedy et al. 2012) and are consistent with the

derivation of the habitat suitability maps (Fedy et al.

2014). Because dispersal may be driven by processes at

larger spatial scales than those that influence habitat selec-

tion, a larger moving window size (17.33 km) based on

the highest mean interseasonal dispersal distance (nesting

to winter range; Fedy et al. 2012) was used for the third

moving window.

A species response to resistance in the landscape may

not be directly linear. Therefore, for each resistance

surface at each spatial scale, we varied the relative

strengths of resistance values using two transformations

of the original variables. In the equation below, we used

an exponential function to effectively homogenize resis-

tances (Ri) with low values and place an emphasis on dif-

ferences in high-resistance habitat,

expa
Ri

Rmaxð Þ (1)

with a being a scale parameter controlling the steepness

of the exponential function. Higher values of a resulted

in greater separation between low and high-resistance val-

ues (See Figure S1), and dividing resistance values by

their maximum value (Rmax) ensured consistency in the

transformation between variables with different ranges of

resistance values in the original layers (see ranges of un-

transformed and transformed resistance values in Appen-

dix S2 and S3 as an example). Hereafter, we refer to this

transformation as our high-resistance transformation.

In the second transformation (hereafter low-resistance

transformation), we reversed the resistance values (max

resistance overall – resistance of cell) and used the result-

ing values in eq. 1. Subsequently, we reversed these values

and added 0.1 to ensure no zero values. This equation

results in the converse of the previous transformation and

Table 1. Resistance surfaces used in sage-grouse (Centrocercus urophasianus; Bonaparte 1827) landscape genetic analysis for the state of Wyo-

ming. All resistance surfaces we originally set to 30 m2, but resampled to 300 m2 resolution before moving window analysis. Any map with a sus-

pected positive influence on gene flow was reversed (max resistance – resistance at each cell) so that all final maps represented resistance with

increased values representing higher resistance.

Variable Description of base map Moving window scales

Predicted effect

on gene flow Source

Landscape

UNDIF Undifferentiated landscape (i.e., all values set to 1) NA NA

FOR Percent coverage of forest1 1.5 km, 6.44 km, 17.33 km Negative Northwest ReGAP

SAGE Percent coverage of sagebrush (all Artemisia

species combined)

1.5 km, 6.44 km, 17.33 km Positive Homer et al. (2012)

AGRIC Percent coverage of irrigated and nonirrigated

agricultural fields1
1.5 km, 6.44 km, 17.33 km Negative Fedy et al. (2014)

ROAD Distance to primary and secondary paved roads.

Set up as a decay function (e(�d/a)) with d as the

distance of each raster cell to a road and a set

to 0.564 km

None Negative Fedy et al. (2014)

RUGG Terrain ruggedness index: range from low values

representing flat areas to high values representing

steep and uneven terrain

1.5 km, 6.44 km, 17.33 km Negative Sappington et al.

(2007)

Habitat Suitability Indices

NEST Nesting habitat suitability derived from resource

selection functions2
1.5 km, 6.44 km, 17.33 km Positive Fedy et al. (2014)

SUMMER Summer habitat suitability derived from resource

selection functions2
1.5 km, 6.44 km, 17.33 km Positive Fedy et al. (2014)

WINTER Winter habitat suitability derived from resource

selection functions2
1.5 km, 6.44 km, 17.33 km Positive Fedy et al. (2014)

1Percent coverage determined from presence in 30 m2 cells
2Used landscape models derived at the state level as described by Fedy et al. (2014)
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essentially emphasizes variation in the favorable habitats

(i.e., low resistance) and homogenizes high-resistance

habitats (see Figure S1). We used two different values of

a (5, 10) for each transformation and thus produced five

resistance surfaces for each original surface (untrans-

formed, high 5, high 10, low 5, and low 10; Appendix S2

and Appendix S3). Each transformed surface was summa-

rized across each of the three moving window extents,

resulting in 15 resistance surfaces for each landscape vari-

able. Given the low density of class I and II roads across

the state, no moving window summaries were conducted

for ROAD resulting in only five total resistance surfaces.

We used the derived resistance surfaces to calculate

pairwise resistance between groups using CIRCUITSCAPE

3.5.8 (McRae and Shah 2009), which considers the land-

scape as an electrical network and each cell a resistor with

an associated resistance. By running electrical current

between nodes (lek groups), the program calculates pair-

wise electrical resistance (measured in ohms) between

locations (McRae 2006; McRae et al. 2008). Current flow

and random walkers through electrical networks have a

strong relationship (McRae and Beier 2007), and thus,

circuit theory has been widely applied to predict patterns

of dispersal and gene flow and identify corridors in eco-

logical landscapes (e.g., Schwartz et al. 2009; Row et al.

2010; Moore et al. 2011).

Model specification

We used a linear mixed model with pairwise genetic dis-

tance as the dependent variable and pairwise resistance val-

ues as the independent. The model also includes a random

effect term that accounts for data points that share a com-

mon lek group (coded as 1) and those that do not (coded

as 0) (Clarke et al. 2002; Van Strien et al. 2012). Thus, the

proportion of total variance associated with the correlation

among data points that share a common group is

addressed in the model formulation (Clarke et al. 2002).

The models were first estimated with the lmer package

(Bates et al. 2014) in R (R Core Team 2014) using REML,

which is required to obtain unbiased estimates of the vari-

ance (Clarke et al. 2002; Van Strien et al. 2012). Secondly,

the models were estimated using the MCMCglmm package

(Hadfield 2009) with a similar model formulation for the

random effects term (~idv(mult.memb(~pop1 + pop2))).

We assessed convergence of the MCMC models by com-

paring results across multiple runs. Estimates from lmer

and MCMCglmm were nearly identical, and thus, we pres-

ent coefficients from lmer, but confidence intervals from

MCMCglmm. Because we were interested in determining

the relative influence of each landscape metric, variables

were standardized and centered around their mean

(Gelman 2008) for all models.

Model selection

We selected the top models through a combined assess-

ment of four model selection criteria. We calculated AICc

from the lmer models and DIC from the MCMCglmm

models. Although information criteria (including AIC)

are generally regarded as not appropriate for models esti-

mated with REML (Verbeke and Molenberghs 2000), this

metric has been used for model selection in landscape

genetics (Selkoe et al. 2010; Richardson 2012) and dem-

onstrated as potentially informative with REML through

simulation (Gurka 2006).

Secondly, we used two marginal R2 values to estimate

the amount of variation explained by the fixed effects.

Marginal R2 values compare a model with only the ran-

dom effects (e.g., the model term accounting for the pair-

wise comparisons) to models with random and fixed

effects. Unlike traditional R2, marginal R2 can decrease

with the addition of variables (Van Strien et al. 2012).

The first metric ðR2
bÞ quantifies the difference in explained

variation between the models with and without fixed

effects using the F-distribution (Edwards and Muller

2008), which we estimated using Kenward–Rogers’
approximation as implemented in the pbkrtest R package

(Halekoh and Højsgaard 2011). The second metric we

used was R2
GLMMðmÞ , as defined by Nakagawa and Schielz-

eth (2013), where the fixed effects variance is estimated

by calculating the variance of fitted values predicted from

a model with only fixed effects. In contrast to R2
b , there

is no correction for the degrees of freedom. Both mar-

ginal R2 statistics provide a measure of the variance

explained by the fixed effects with higher values indicating

better model fit.

There is no clear preferred method of assessing model

fit within the context of our research, as there are uncer-

tainties associated with all of the criteria discussed above.

Thus, we also calculated a mean model rank (i.e., for all

criteria combined) by ranking the candidate models sepa-

rately for each criteria and then determining the mean

rank and standard deviation across models. This provided

a consensus value (mean) and an estimate of agreement

(standard deviation) between the different model selection

criteria.

Ecological determinants of functional
connectivity

Spatial scale and resistance parameterization

In total, we had 15 resistance surfaces for each landscape

variable (three habitat indices and five landscape compo-

nents; Table 1). All of the 15 surfaces varied in moving

window sizes and/or parameterization (i.e., exponential

transformation), and for each, we fit a univariate model
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of genetic differentiation to the derived set of pairwise

resistances. The most appropriate spatial scale and resis-

tance transformation for each variable were selected by

choosing the model with the best (i.e., lowest) mean

model rank. The top resistance values for each compo-

nent and index were used in the model sets described

below.

Dispersal hypotheses

We derived a set of 22 models that describe resistance to

dispersal for sage-grouse across Wyoming (Table 2). As

per our objectives, we designed the set of models to com-

pare the ability of seasonal habitat suitability indices (HSI

models; models 2–4) and individual and combined land-

scape components (component models; models 5–22) to

describe functional connectivity. We compared models

and their variables by comparing the individual and com-

bined model selection indices and the standardized

regression coefficients and their confidence intervals.

Combined landscape components

An advantage of using habitat suitability indices in land-

scape genetic models is that the result is a single resis-

tance surface that researchers can incorporate in other

applications such as the identification of dispersal corri-

dors. In contrast, a model selection approach may select a

set of best-fit multivariate models with the pairwise resis-

tance values, but not generate a single resistance surface

that can be used in other applications. We attempted to

address this problem by devising a single landscape resis-

tance surface using the coefficients derived from the top

multivariate models. Because all variables were standard-

ized, we determined the relative weights of each variable

by dividing the value for each coefficient by the sum all

coefficients in the model. Next, we used raster math to

multiply these values by their respective resistance sur-

faces and summed all surfaces (e.g., final raster val-

ues = coefficient weight A 9 raster A + coefficient weight

B 9 raster B) resulting in a single combined resistance

surface. We validated this approach by calculating pair-

wise resistances from the combined surfaces and com-

pared the fit of the resulting pairwise resistances with

genetic data. An increased fit of the combined resistance

surfaces compared to models with the individual compo-

nents alone would suggest some value to this approach.

Results

Genetic diversity and differentiation

Overall diversity indices were relatively high and consis-

tent between groups with allelic richness ranging from

5.05 to 7.52 and Hexp ranging from 0.70 to 0.82 (see

Table S1). Pairwise genetic differentiation between lek

groups ranged from 0.0004 to 0.058 for GST and from

0.004 to 0.66 for Dest. Although there were differences in

the magnitude of the values, they were highly correlated

(0.98; see Figure S2), and thus, only the results for GST

are reported.

Ecological determinants of functional
connectivity

Spatial scale and resistance parameterization

Not surprisingly, there were generally strong correlations

among resistance surfaces across moving window sizes

and among transformations (see Figure S3, Tables S2 and

S3). For the habitat indices (NEST, SUMMER, and WIN-

TER) and SAGE, changing the moving window size alone

did not have a strong effect on resistance values (see Fig-

ure S3). Changing the transformation strength, however,

tended to result in greater changes in the level of correla-

tion among differently scaled resistance surfaces, with val-

ues as low as 0.6. For the landscape components, which

were less continuously distributed in their native form

(RUGG, AGRIC, and FOR), scale and strength transfor-

Table 2. Multivariate models used to describe functional connectivity

for sage-grouse (Centrocercus urophasianus; Bonaparte 1827) across

the state of Wyoming.

Model ID Model

1 GEN~UNDIF

2 GEN~NEST

3 GEN~SUMMER

4 GEN~WINTER

5 GEN~FOR

6 GEN~FOR+RUGG

7 GEN~FOR+ROAD

8 GEN~FOR+ROAD+AGRIC

9 GEN~FOR+AGRIC

10 GEN~SAGE

11 GEN~SAGE+RUGG

12 GEN~SAGE+ROAD

13 GEN~SAGE+ROAD+AGRIC

14 GEN~SAGE+AGRIC

15 GEN~FOR+SAGE

16 GEN~FOR+SAGE+RUGG

17 GEN~FOR+SAGE+ROAD

18 GEN~FOR+SAGE+ROAD+AGRIC

19 GEN~FOR+SAGE+AGRIC

20 GEN~ROAD

21 GEN~ROAD+AGRIC

22 GEN~AGRIC

1960 ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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mation resulted in similar deviations between resistance

surfaces (see Figure S3).

For NEST, SUMMER, SAGE, and RUGG, resistance val-

ues derived from surfaces with a 17.33-km moving win-

dow had better ranks overall (Fig. 2; Tables S2 and S3),

with the top model for all of these landscape metrics being

derived from this moving window size (Table 3). For FOR

and AGRIC, the opposite pattern emerged with the small-

est moving window size (1.5 km) having better model

ranks (Fig. 2; Table 3). There was little difference in model

ranks for the WINTER surface resistance values, with the

top model coming from a 6.44-km moving window

(Table 3). With the exception of WINTER and RUGG,

using the high-resistance transformation led to better

model ranks (Fig. 2) and none of the top models con-

tained resistance values derived from the low-resistance

transformation (Table 3). For WINTER and AGRIC, the

top model contained no strength transformation, with all

other top models transformed to a strength value of High5

or High10 (Table 3).

Dispersal hypotheses

Correlation between pairwise resistance values derived from

the top habitat resistance maps ranged from 0.69 (SUM-

MER–WINTER) to 0.84 (NEST–WINTER; Figure S4). Pair-

wise resistance values from SUMMER had higher

correlation with values derived from UNDIF (0.70) than

did resistances from the NEST (0.58) and WINTER (0.65)

surfaces. In general, the pairwise resistance values were nor-

mally distributed (see Figure S4). Correlation among resis-

tances from the top landscape components ranged from

0.48 to 0.83 and between 0.57 (AGRIC) and 0.94 (ROAD)

for their correlation with UNDIF values (see Figure S5).

Model 1 (UNDIF) was the poorest ranking model. This

model also had a low standard deviation in model rank,

Table 3. Top univariate models and associated ranks for habitat and landscape resistance surfaces describing functional connectivity for sage-

grouse (Centrocercus urophasianus; Bonaparte 1827) across Wyoming.

Model Moving Window Transformation Mean rank SD rank

NEST 17.33 km High 10 1.75 0.96

SUMMER 17.33 km High 5 5.5 3.70

WINTER 6.44 km 0 2.75 1.26

FOR 1.5 km High 10 3.25 3.86

SAGE 17.33 km High 5 4.5 3.87

RUGG 17.33 km High 10 4.25 1.5

AGRIC 1.5 km 0 3.25 1.06

ROAD NA High 10 1.5 1.00
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Figure 2. Mean model selection ranks for

univariate models describing functional

connectivity for sage-grouse (Centrocercus

urophasianus; Bonaparte 1827) across

Wyoming. The scale of moving window (A)

and transformation of resistance values (B) for

habitat suitability and individual landscape

components were varied. Lower ranks are the

preferred model.
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suggesting it performed poorly for all model selection cri-

teria (Fig. 3; Table 4). The best consensus ranked HSI

models were model 2 (NEST) and model 4 (WINTER),

which performed much better than model 3 (SUMMER).

This trend was generally consistent across all model selec-

tion criteria, with the exception of R2b, which preferred

more complex models (Fig. 3). The best landscape com-

ponent model was model 11 (SAGE and RUGG), which

had a similar ranking to the best HSI models (Fig. 3;

Table 4). Component models 6, 11, and 16 all had similar

ranks, suggesting that FOR, RUGG, and SAGE were all

contributing to effective dispersal, but that FOR and

RUGG and SAGE and RUGG could adequately capture

this trend, and the inclusion of all three (FOR, SAGE,

and RUGG) did not improve model fit. The anthropo-

genic resistance surfaces (ROAD and AGRIC) did not

Table 4. Highest and lowest model rankings for multivariate models used to describe functional connectivity for sage-grouse (Centrocercus ur-

ophasianus; Bonaparte 1827) across the state of Wyoming.

Model Rank AICc D AICc DIC D DIC R2b R2GLMMðcÞ Mean rank SD rank

GEN~WINTER 1 �4974.89 0 �5115.56 0 0.40 0.69 4.75 6.85

GEN~SAGE+RUGG 2 �4955.65 19.24 �5086.91 28.65 0.70 0.55 4.75 3.59

GEN~NEST 3 �4968.34 6.55 �5088.35 27.21 0.54 0.75 6.00 5.94

GEN~FOR+RUGG 4 �4955.20 19.69 �5094.89 20.67 0.56 0.52 6.00 3.74

GEN~FOR+SAGE+RUGG 5 �4944.54 30.35 �5090.20 25.36 0.67 0.52 6.75 4.19

GEN~SAGE+AGRIC 6 �4953.19 21.7 �5083.47 32.09 0.63 0.52 8.25 3.20

GEN~SUMMER 21 �4942.06 32.83 �5072.12 43.44 0.31 0.46 18.25 4.50

GEN~UNIDF 22 �4938.77 36.12 �5076.96 38.6 0.31 0.23 20.25 1.71
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Figure 3. Individual and combined model

selection criteria for multivariate models

(Table 2) relating pairwise genetic

differentiation to pairwise resistance derived

from different landscape metrics for sage-

grouse (Centrocercus urophasianus; Bonaparte

1827) across Wyoming. Closed circles

represent criteria where lower values should be

preferred (better model), while open circles

represent the opposite.
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appear to have a strong influence on model rankings,

although AGRIC was included in one of the top six mod-

els (Table 4). Beyond the agreement for the superior fit

of NEST and WINTER, there were differences between

the model selection indices leading to low correlations

between the different criteria (Figure S6).

Examining relative model coefficients, values for WIN-

TER and NEST were similarly higher than all other coeffi-

cients (Fig. 4). FOR and SAGE were always significantly

positive, except when combined together in the same

model, and FOR was often reduced and nonsignificant

(Fig. 4). RUGG had a higher coefficient than both SAGE

and FOR. However, given the overlapping confidence inter-

vals and high correlations between SAGE, FOR, and RUGG,

it would be difficult to determine the relative importance of

these three surfaces. The coefficient for ROAD was generally

nonsignificant when combined with other variables, but

AGRIC was significantly positive in all models.

Combined landscape resistance

Eliminating the anthropogenic models, which had a much

lower fit, one of the top three landscape component

models was within each of the remaining model group-

ings, with a large gap in rank for the next highest ranking

model in the group (Fig. 3). Thus, these models were

fairly representative samples and we determined the rela-

tive model coefficient weights for the variables in each of

these models (SAGE and RUGG; FOR and RUGG; FOR,

SAGE, and RUGG). Because of the differences in parame-

terization, we could not combine surfaces with different

transformations and thus derived combined maps with

the High5 and High10 transformed resistance surfaces

separately. Overall, the High10 combined surfaces all pro-

vided superior fit over the models with individual land-

scapes, but not the multivariate models or those

containing the top HSI surfaces (Fig. 5).

Discussion

Through model selection and parameter estimation, we

were able to discern the major ecological factors driving

functional connectivity for a mobile terrestrial vertebrate.

Overall, the broad-scale (i.e., large operational scale) dis-

tribution of high-resistance (i.e., low quality) nesting and

winter seasonal habitat appeared most important in

0.
00

0
0.

01
5

0.
03

0
C

oe
ffi

ci
en

t

(A)

0.
00

0
0.

01
5

0.
03

0
C

oe
ffi

ci
en

t

(B)

0.
00

0
0.

01
5

0.
03

0
C

oe
ffi

ci
en

t

(C)

0.
00

0
0.

01
5

0.
03

0

Model

C
oe

ffi
ci

en
t

(D)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 4. Standardized coefficients and their
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(Centrocercus urophasianus; Bonaparte 1827)

dispersal hypothesis models (Table 2) with (A)
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as a diamond with capped error bars.

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 1963

J. R. Row et al. Sage-grouse Landscape Genetics



driving patterns of effective dispersal for sage-grouse

across this spatial extent. Comparing the results of models

containing habitat suitability indices and individual land-

scape components suggested some convergence between

dispersal and daily-use habitat, and a benefit (i.e.,

improved model fit with genetic data) to using habitat

suitability modeling in landscape genetics.

Ecological determinants of functional
connectivity

Spatial scale and resistance parameterization

The spatial scale with which organisms respond to land-

scape structure is largely determined through their inher-

ent dispersal ability and sensitivity to changes in a given

landscape feature (D’Eon et al. 2002; Anderson et al.

2010). Indeed, studies that have considered varying spatial

scales in landscape genetics have demonstrated that the

importance of a landscape variable to patterns of genetic

structure is dependent on the spatial scale with which it

is quantified (Baguette and Van Dyck 2007; Murphy et al.

2010; Wasserman et al. 2010). Although we found that

most resistance distances were correlated across different

spatial transformations, large-scale patterns appeared most

important with resistances transformed using large mov-

ing windows (6.44 km or 17.33 km in radius) providing

the best fit with genetic data. This is perhaps not surpris-

ing as sage-grouse habitat selection is influenced by habi-

tats at large landscape scales (Doherty et al. 2010a; Knick

and Connelly 2011; Aldridge et al. 2012; Fedy et al. 2014)

and interseasonal movements can exceed 90 km and aver-

age as much as 20 km for some populations (Fedy et al.

2012). Thus, small-scale differences in habitat structure

are unlikely to have major impacts on the dispersal

behavior of sage-grouse across this large spatial extent.

Although we altered the operational scale using moving

windows, the spatial extent of our study area remained

fixed because we were interested in establishing patterns

of connectivity across the entire state. However, for other

species the landscape features influencing patterns of gene

flow vary depending on their availability (Moore et al.

2011; Short Bull et al. 2011). Indeed, this was the case for

habitat selection as Fedy et al. (2014) found the impor-

tance of individual landscape characteristics varied among

regions within Wyoming, possibly driven by differences

in habitat availability. Thus, changing the extent

examined here and comparing patterns observed in differ-
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ent regions of the state could provide further insight into

the main factors influencing patterns of differentiation for

sage-grouse.

In addition to the importance of spatial scale, choosing

appropriate and biologically meaningful values for resis-

tance surfaces can be challenging and have an impact on

results (Spear et al. 2010). Resistance surfaces should

reflect spatial variation in the distribution of landscape

features that will impede or facilitate gene flow and hence

influence functional connectivity. However, a species

response to landscape features is not necessarily summa-

tive. We used two different equations to assign resistance

values to ecological variables and found that when higher

overall values were placed on high-resistance habitats, it

generally led to a better fit with genetic data (AGRIC,

WINTER, and FOR were exceptions). This pattern is con-

sistent with other studies that have grouped habitat suit-

ability indexes and found that placing exponentially

higher resistance values to extremely low-quality habitat

led to resistance distances that had a greater correlation

with genetic data (Wang et al. 2008; Row et al. 2010). In

fact, Row et al. (2010) found when resistance values cal-

culated for very unsuitable habitats were defined as abso-

lute barriers, these surfaces provided the best fit with

genetic data. These results appear to suggest that for dis-

persing individuals, the quality of usable habitat is less

important than the distribution of very unsuitable habitat,

but more studies are required to determine whether this

pattern is consistent across species and regions.

Dispersal hypotheses

Landscape genetic studies are increasingly utilizing habitat

suitability indexes to derive resistance surfaces. In the

majority of these studies, least-cost paths or resistance

distances derived from habitat suitability offer a better fit

with genetic data than Euclidean distance (Wang et al.

2008; Row et al. 2010; Shanahan et al. 2010; Shafer et al.

2012; Razgour et al. 2014), which highlights the impor-

tance of habitat suitability driving dispersal. Here, we

took the additional step of utilizing seasonal habitat mod-

els, which offered unique insights into sage-grouse dis-

persal biology. We found that habitat preferences for

particular seasons were more important in driving pat-

terns of genetic differentiation. Adult sage-grouse typically

display high fidelity to their seasonal distributions and

breeding sites (Berry and Eng 1985; Schroeder and Robb

2003; Fischer et al. 2013). Thus, it follows that overall dis-

persal patterns in sage-grouse should be driven by year-

ling sage-grouse searching for suitable nesting habitat

upon leaving their initial wintering sites, perhaps leading

to our finding that the distribution of nesting and winter

habitat was more important than summer habitat for

functional connectivity. Regardless of the mechanism,

these seasonal differences and the fact that dispersal rates

can vary depending on life stage (Dobson 1982), season

(Southern 1962; Long et al. 2008), or the current demo-

graphics of a population (Poole 1997) highlight the

importance of considering dispersal biology when devis-

ing resistance surfaces for landscape genetics.

In addition to the distribution of seasonal habitat,

some individual landscape components appeared more

important for functional connectivity. Positive associa-

tions with sagebrush and negative associations with forest

and terrain ruggedness are common to habitat selection

studies on sage-grouse (Carpenter et al. 2010; Doherty

et al. 2010a; Aldridge et al. 2012; Fedy et al. 2014). We

found these features were not only common to one (ter-

rain ruggedness included in winter, but not nesting) or

both (forest and sage included in both HSIs) of the top

HSI models, but were also present in the top component

models demonstrating their overall importance to func-

tional connectivity. Despite the apparent importance of

these variables, the inclusion of SAGE and FOR in the

same model did not improve model fit. This is likely

because they are negatively correlated on the landscape at

large spatial scales and the impedance of gene flow from

forests and the facilitation of gene flow from sagebrush

likely have similar effects on overall genetic structure.

A direct agreement between the HSI models and land-

scape component models was not always the case. Both

major roads (Aldridge and Boyce 2007; Atamian et al.

2010; Carpenter et al. 2010; Doherty et al. 2010a; Dzialak

et al. 2013) and agricultural fields (Aldridge and Boyce

2007; Walker et al. 2007; Fedy et al. 2014) have proven to

be negatively associated with habitat selection, and both

landscape components were included in the winter and

nesting HSIs. Neither component, however, was present

in the top component models, suggesting they were not

having strong overall effects at this spatial extent. This

was particularly true for roads, which were not included

in any of the top models and had coefficients that over-

lapped with zero for most of multivariate models. It

should be noted, however, that resistance values from

roads were highly correlated with an equal landscape

(0.94). This is likely because there are relatively few class

I and class II roads (i.e., paved) across Wyoming leading

to minimal variation in the number of roads that are

crossed between pairwise locations. In contrast, the resis-

tance values from AGRIC had one of the lowest correla-

tions with an equal landscape (0.57) and the coefficients

for AGRIC were significantly greater than zero for all

multivariate models. In addition, AGRIC with SAGE per-

formed relatively well when compared with other compo-

nent models suggesting a potential negative effect of

agricultural fields on sage-grouse connectivity. Given the
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negative association between sage-grouse habitat selection

and these anthropogenic landscape features and their

uneven spatial distribution on the landscape, it may be

particularly important to conduct analysis at smaller spa-

tial extents before drawing conclusions on their overall

impact on functional connectivity.

Across our study region, there are two mountain ranges

(Big Horn and Wind River) that likely limit sage-grouse

dispersal. This is evidenced by the fact that all of the

resistance values that had the best fit with genetic data

were derived from surfaces that placed high-resistance

values to these regions. Given the extent of these moun-

tain ranges, these large-scale barriers may have a dispro-

portionate influence and mask the effect of some of the

other landscape features (e.g., roads, agricultural fields),

which may have more subtle impacts. Future studies con-

ducted at smaller spatial extents could test for regional

variation in the patterns observed here and make valuable

contributions to our understanding of the influence of

varying spatial extents on our conclusions. Further, the

importance of individual landscape variables can vary

with their availability (Short Bull et al. 2011), and thus, it

may be equally important to determine whether different

patterns emerge when conducting similar studies in

regions with lower amounts of high-quality habitat or

greater habitat fragmentation.

Use of model selection approaches in
landscape genetics

Mixed models are an important tool to account for

dependence in pairwise datasets in landscape genetics

(Pavlacky et al. 2009; Selkoe et al. 2010; Van Strien et al.

2012). As presented here, mixed modeling approaches

allow for the comparison of a model set that can repre-

sent a suite of biological hypotheses about the functional

connectivity of wildlife populations. Despite the potential

value of combining mixed models with model selection,

the different model selection criteria used here did not

always agree on model rank. Van Strien et al. (2012) sug-

gested using R2
b to select the top mixed model, but when

comparing with the other selection criteria, it appears this

criterion was biased toward more complex models. R2
b

was the only criteria that did not select one of the HSI

models as the top model and instead selected a compo-

nent model with three parameters. In addition, the top

three models chosen by R2
b had two or more parameters,

and all of the lowest ranking models had a single parame-

ter. This could have important consequences when com-

paring multivariate and univariate models together.

R2
GLMM was more in agreement with AICc and DIC and

had higher values for single parameter models (WINTER

and SUMMER). Overall, these results indicate that there

needs to be more research on the most appropriate model

selection criteria for different circumstances. The selection

criteria may vary in their accuracy when attempting to

explain different processes and sampling variation. In the

absence of a clearly preferred criterion, we recommend

the assessment of agreement across multiple selection cri-

teria as presented here.

A potential disadvantage of using model selection

approaches is that although the approach will establish a

model describing functional connectivity, it will not lead

to an overall resistance surface if the top model is multi-

variate. We attempted to circumvent this problem by

using standardized regression coefficients that combine

individual resistance surfaces into a combined surface. In

general, pairwise resistances derived from the combined

surfaces provided a better fit than values derived from a

single landscape component, suggesting that this may be a

promising approach. Despite this improvement, the level

of fit with genetic data was not as great as the multivariate

models or the HSI models, and thus, more research is

required into the best methods for translating multivariate

models into individual resistance surfaces. In the mean-

time, our results combined with other studies linking HSIs

and genetic differentiation (Laiolo and Tella 2006; Wang

et al. 2008; Row et al. 2010) suggest combining habitat

suitability modeling with landscape genetics may be a use-

ful approach when a single resistance surface is desired.

Conservation implications

Across their range, sage-grouse have experienced popula-

tion declines and range contractions (Schroeder et al.

2004; Garton et al. 2011). In recognition of this, core

areas within Wyoming have been identified and priori-

tized for sage-grouse conservation (Doherty et al. 2011),

yet there is little understanding of how well connected

those areas are and whether they will stay connected into

the future. Here we provide the first formal assessment of

functional connectivity for sage-grouse in Wyoming and

establish the importance of seasonal habitat indices and

individual landscape components in promoting (sage-

brush) and impeding (forest, terrain ruggedness) gene

flow. Further, we have established several resistance sur-

faces that describing functional connectivity for sage-

grouse, which can be used and manipulated to identify

and protect regions disproportionately important for

maintaining connectivity between existing core areas.
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