60 research outputs found

    256: Hematopoietic stem cell transplantation for hematological diseases at Yeditepe University Hospital

    Get PDF

    Integrated Genomic Analysis of the 8q24 Amplification in Endometrial Cancers Identifies ATAD2 as Essential to MYC-Dependent Cancers

    Get PDF
    Chromosome 8q24 is the most commonly amplified region across multiple cancer types, and the typical length of the amplification suggests that it may target additional genes to MYC. To explore the roles of the genes most frequently included in 8q24 amplifications, we analyzed the relation between copy number alterations and gene expression in three sets of endometrial cancers (N = 252); and in glioblastoma, ovarian, and breast cancers profiled by TCGA. Among the genes neighbouring MYC, expression of the bromodomain-containing gene ATAD2 was the most associated with amplification. Bromodomain-containing genes have been implicated as mediators of MYC transcriptional function, and indeed ATAD2 expression was more closely associated with expression of genes known to be upregulated by MYC than was MYC itself. Amplifications of 8q24, expression of genes downstream from MYC, and overexpression of ATAD2 predicted poor outcome and increased from primary to metastatic lesions. Knockdown of ATAD2 and MYC in seven endometrial and 21 breast cancer cell lines demonstrated that cell lines that were dependent on MYC also depended upon ATAD2. These same cell lines were also the most sensitive to the histone deacetylase (HDAC) inhibitor Trichostatin-A, consistent with prior studies identifying bromodomain-containing proteins as targets of inhibition by HDAC inhibitors. Our data indicate high ATAD2 expression is a marker of aggressive endometrial cancers, and suggest specific inhibitors of ATAD2 may have therapeutic utility in these and other MYC-dependent cancers

    Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial

    Exploring the mechanisms of renoprotection against progressive glomerulosclerosis

    Get PDF
    In this review, I introduce the strategy developed by our laboratory to explore the mechanisms of renoprotection against progressive glomerulosclerosis leading to renal death. First, I describe the experimental rat model in which disturbances of vascular regeneration and glomerular hemodynamics lead to irreversible glomerulosclerosis. Second, I discuss the possible mechanisms determining the progression of glomerulosclerosis and introduce a new imaging system based on intravital confocal laser scanning microscopy. Third, I provide an in-depth review of the regulatory glomerular hemodynamics at the cellular and molecular levels while focusing on the pivotal role of Ca2+-dependent gap junctional intercellular communication in coordinating the behavior of mesangial cells. Last, I show that local delivery of renoprotective agents, in combination with diagnostic imaging of the renal microvasculature, allows the evaluation of the therapeutic effects of angiotensin II receptor and cyclooxygenase activity local blockade on the progression of glomerulosclerosis, which would otherwise lead to renal death

    Genes of cell-cell interactions, chemotherapy detoxification and apoptosis are induced during chemotherapy of acute myeloid leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular changes <it>in vivo </it>in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response.</p> <p>Methods</p> <p>The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO) terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting.</p> <p>Results</p> <p>Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival) are characterized by a unique gene response profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells.</p> <p>Conclusion</p> <p>Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy response. Therapy-induced gene expression reflects the complex biological processes involved in clinical cancer cell eradication and should be explored for future enhancement of therapy.</p

    Genome-Wide Profiling of Histone H3 Lysine 4 and Lysine 27 Trimethylation Reveals an Epigenetic Signature in Prostate Carcinogenesis

    Get PDF
    BACKGROUND: Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip) techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis
    corecore