72 research outputs found

    Human deciduous teeth from the Middle Stone Age layers of Sibudu Cave (South Africa)

    Get PDF
    Abstract: In the African Pleistocene, the fossil evidence for early Homo sapiens populations is still relatively limited. Here we present two additional specimens (two deciduous teeth) recovered from the Middle Stone Age (MSA) deposits of Sibudu Cave (KwaZulu‐Natal, South Africa). We describe their morphology and metrics, using three‐dimensional models of the teeth obtained from high‐resolution micro‐CT images. The first specimen is a Ldm1 (HUM. TO 1) recovered in the BS5 layer dated 77.3 ± 2.7 ka, and associated with stone tools assigned to the “pre‐Still Bay” assemblage. The other specimen is a Rdi1 (HUM. TO 2) coming from the Pinkish Grey Sand (PGS) layer, dated 64.7±2.3 ka, and associated with a Howieson’s Poort industry. Both teeth are well preserved, with minor post mortem cracks not affecting the overall morphology, and they comprise the intact, worn crown and the remnants of the roots, naturally resorbed. A large carious lesion occupies most of the distal face and part of the occlusal surface in the Ldm1; also a chip of enamel is missing from the disto‐buccal corner. In the Rdi1 average enamel thickness and relative enamel thickness values have been measured. For both teeth, we compared mesiodistal (MD) and bucco‐lingual (BL) diameters with those of other Late Pleistocene deciduous teeth and extant Homo sapiens. The analysis has shown that the teeth are comparable in size with the other MSA specimens described in the literature

    The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant

    Get PDF
    The late Middle Palaeolithic (MP) settlement patterns in the Levant included the repeated use of caves and open landscape sites. The fossil record shows that two types of hominins occupied the region during this period - Neandertals and Homo sapiens. Until recently, diagnostic fossil remains were found only at cave sites. Because the two populations in this region left similar material cultural remains, it was impossible to attribute any open-air site to either species. In this study, we present newly discovered fossil remains from intact archaeological layers of the open-air site 'Ein Qashish, in northern Israel. The hominin remains represent three individuals: EQH1, a nondiagnostic skull fragment; EQH2, an upper right third molar (RM3); and EQH3, lower limb bones of a young Neandertal male. EQH2 and EQH3 constitute the first diagnostic anatomical remains of Neandertals at an open-air site in the Levant. The optically stimulated luminescence ages suggest that Neandertals repeatedly visited 'Ein Qashish between 70 and 60 ka. The discovery of Neandertals at open-air sites during the late MP reinforces the view that Neandertals were a resilient population in the Levant shortly before Upper Palaeolithic Homo sapiens populated the region

    The discovery of an in situ Neanderthal remain in the Bawa Yawan Rockshelter, West-Central Zagros Mountains, Kermanshah.

    Get PDF
    Neanderthal extinction has been a matter of debate for many years. New discoveries, better chronologies and genomic evidence have done much to clarify some of the issues. This evidence suggests that Neanderthals became extinct around 40,000-37,000 years before present (BP), after a period of coexistence with Homo sapiens of several millennia, involving biological and cultural interactions between the two groups. However, the bulk of this evidence relates to Western Eurasia, and recent work in Central Asia and Siberia has shown that there is considerable local variation. Southwestern Asia, despite having a number of significant Neanderthal remains, has not played a major part in the debate over extinction. Here we report a Neanderthal deciduous canine from the site of Bawa Yawan in the West-Central Zagros Mountains of Iran. The tooth is associated with Zagros Mousterian lithics, and its context is preliminary dated to between ~43,600 and ~41,500 years ago

    Unravelling biocultural population structure in 4th/3rd century BC Monterenzio Vecchio (Bologna, Italy) through a comparative analysis of strontium isotopes, non-metric dental evidence, and funerary practices

    Get PDF
    The 4th century BC marks the main entrance of Celtic populations in northern Italy. Their arrival has been suggested based on the presence of Celtic customs in Etruscan mortuary contexts, yet up to now few bioarchaeological data have been examined to support or reject the arrival of these newcomers. Here we use strontium isotopes, non-metric dental traits and funerary patterns to unravel the biocultural structure of the necropolis of Monterenzio Vecchio (Bologna, Italy). Subsamples of our total sample of 38 individuals were analyzed based on different criteria characterizing the following analyses: 1) strontium isotope analysis to investigate migratory patterns and provenance; 2) non-metric dental traits to establish biological relationships between Monterenzio Vecchio, 13 Italian Iron age necropolises and three continental and non-continental Celtic necropolises; 3) grave goods which were statistically explored to detect possible patterns of cultural variability. The strontium isotopes results indicate the presence of local and non-local individuals, with some revealing patterns of mobility. The dental morphology reveals an affinity between Monterenzio Vecchio and Iron Age Italian samples. However, when the Monterenzio Vecchio sample is separated by isotopic results into locals and non-locals, the latter share affinity with the sample of non-continental Celts from Yorkshire (UK). Moreover, systematic analyses demonstrate that ethnic background does not retain measurable impact on the distribution of funerary elements. Our results confirm the migration of Celtic populations in Monterenzio as archaeologically hypothesized on the basis of the grave goods, followed by a high degree of cultural admixture between exogenous and endogenous traits. This contribution shows that combining different methods offers a more comprehensive perspective for the exploration of biocultural processes in past and present populations

    An overview of Alpine and Mediterranean palaeogeography, terrestrial ecosystems and climate history during MIS 3 with focus on the Middle to Upper Palaeolithic transition

    Get PDF
    This paper summarizes the current state of knowledge about the millennial scale climate variability characterizing Marine Isotope Stage 3 (MIS 3) in S-Europe and the Mediterranean area and its effects on terrestrial ecosystems. The sequence of Dansgaard-Oeschger events, as recorded by Greenland ice cores and recognizable in isotope profiles from speleothems and high-resolution palaeoecological records, led to dramatic variations in glacier extent and sea level configuration with major impacts on the physiography and vegetation patterns, both latitudinally and altitudinally. The recurrent succession of (open) woodlands, including temperate taxa, and grasslands with xerophytic elements, have been tentatively correlated to GIs in Greenland ice cores. Concerning colder phases, the Greenland Stadials (GSs) related to Heinrich events (HEs) appear to have a more pronounced effect than other GSs on woodland withdrawal and xerophytes expansion. Notably, GS 9-HE4 phase corresponds to the most severe reduction of tree cover in a number of Mediterranean records. On a long-term scale, a reduction/opening of forests throughout MIS 3 started from Greenland Interstadials (GIs) 14/13 (ca. 55\u201348 ka), which show a maximum in woodland density. At that time, natural environments were favourable for Anatomically Modern Humans (AMHs) to migrate from Africa into Europe as documented by industries associated with modern hominin remains in the Levant. Afterwards, a variety of early Upper Palaeolithic cultures emerged (e.g., Uluzzian and Proto-Aurignacian). In this chronostratigraphic framework, attention is paid to the Campanian Ignimbrite tephra marker, as a pivotal tool for deciphering and correlating several temporal-spatial issues crucial for understanding the interaction between AMHs and Neandertals at the time of the Middle to Upper Palaeolithic transition

    Unravelling biocultural population structure in 4th/3rd century BC Monterenzio Vecchio (Bologna, Italy) through a comparative analysis of strontium isotopes, non-metric dental evidence, and funerary practices.

    Get PDF
    The 4th century BC marks the main entrance of Celtic populations in northern Italy. Their arrival has been suggested based on the presence of Celtic customs in Etruscan mortuary contexts, yet up to now few bioarchaeological data have been examined to support or reject the arrival of these newcomers. Here we use strontium isotopes, non-metric dental traits and funerary patterns to unravel the biocultural structure of the necropolis of Monterenzio Vecchio (Bologna, Italy). Subsamples of our total sample of 38 individuals were analyzed based on different criteria characterizing the following analyses: 1) strontium isotope analysis to investigate migratory patterns and provenance; 2) non-metric dental traits to establish biological relationships between Monterenzio Vecchio, 13 Italian Iron age necropolises and three continental and non-continental Celtic necropolises; 3) grave goods which were statistically explored to detect possible patterns of cultural variability. The strontium isotopes results indicate the presence of local and non-local individuals, with some revealing patterns of mobility. The dental morphology reveals an affinity between Monterenzio Vecchio and Iron Age Italian samples. However, when the Monterenzio Vecchio sample is separated by isotopic results into locals and non-locals, the latter share affinity with the sample of noncontinental Celts from Yorkshire (UK). Moreover, systematic analyses demonstrate that ethnic background does not retain measurable impact on the distribution of funerary elements. Our results confirm the migration of Celtic populations in Monterenzio as archaeologically hypothesized on the basis of the grave goods, followed by a high degree of cultural admixture between exogenous and endogenous traits. This contribution shows that combining different methods offers a more comprehensive perspective for the exploration of biocultural processes in past and present populations

    Integrated multidisciplinary ecological analysis from the Uluzzian settlement at the Uluzzo C Rock Shelter, south-eastern Italy

    Get PDF
    open20siThe Middle to Upper Palaeolithic transition, between 50 000 and 40 000 years ago, is a period of important ecological and cultural changes. In this framework, the Rock Shelter of Uluzzo C (Apulia, southern Italy) represents an important site due to Late Mousterian and Uluzzian evidence preserved in its stratigraphic sequence. Here, we present the results of a multidisciplinary analysis performed on the materials collected between 2016 and 2018 from the Uluzzian stratigraphic units (SUs) 3, 15 and 17. The analysis involved lithic technology, use-wear, zooarchaeology, ancient DNA of sediments and palaeoproteomics, completed by quartz single-grain optically stimulated luminescence dating of the cave sediments. The lithic assemblage is characterized by a volumetric production and a debitage with no or little management of the convexities (by using the bipolar technique), with the objective to produce bladelets and flakelets. The zooarchaeological study found evidence of butchery activity and of the possible exploitation of marine resources, while drawing a picture of a patchy landscape, composed of open forests and dry open environments surrounding the shelter. Ancient mitochondrial DNA from two mammalian taxa were recovered from the sediments. Preliminary zooarchaeology by mass spectrometry results are consistent with ancient DNA and zooarchaeological taxonomic information, while further palaeoproteomics investigations are ongoing. Our new data from the re-discovery of the Uluzzo C Rock Shelter represent an important contribution to better understand the meaning of the Uluzzian in the context of the Middle/Upper Palaeolithic transition in south-eastern Italy.First published: 13 July 2021openSARA SILVESTRINI, MATTEO ROMANDINI, GIULIA MARCIANI, SIMONA ARRIGHI, LISA CARRERA, ANDREA FIORINI, JUAN MANUEL LÓPEZ-GARCÍA, FEDERICO LUGLI, FILOMENA RANALDO, VIVIANE SLON, LAURA TASSONI, OWEN ALEXANDER HIGGINS, EUGENIO BORTOLINI, ANTONIO CURCI, MATTHIAS MEYER, MICHAEL CHRISTIAN MEYER, GREGORIO OXILIA, ANDREA ZERBONI, STEFANO BENAZZI, SPINAPOLICE ENZA ELENASARA SILVESTRINI, MATTEO ROMANDINI, GIULIA MARCIANI, SIMONA ARRIGHI, LISA CARRERA, ANDREA FIORINI, JUAN MANUEL LÓPEZ-GARCÍA, FEDERICO LUGLI, FILOMENA RANALDO, VIVIANE SLON, LAURA TASSONI, OWEN ALEXANDER HIGGINS, EUGENIO BORTOLINI, ANTONIO CURCI, MATTHIAS MEYER, MICHAEL CHRISTIAN MEYER, GREGORIO OXILIA, ANDREA ZERBONI, STEFANO BENAZZI, SPINAPOLICE ENZA ELEN

    Backdating systematic shell ornament making in Europe to 45,000 years ago.

    Get PDF
    Personal ornaments are commonly linked to the emergence of symbolic behavior. Although their presence in Africa dates back to the Middle Stone Age, evidence of ornament manufacturing in Eurasia are sporadically observed in Middle Palaeolithic contexts, and until now, large-scale diffusion has been well documented only since the Upper Palaeolithic. Nevertheless, little is known during the period between ca. 50,000 and 40,000 years ago (ka), when modern humans colonized Eurasia replacing existing hominin populations such as the Neandertals, and a variety of “transitional” and/or early Upper Palaeolithic cultures emerged. Here, we present shell ornaments from the Uluzzian site of Grotta del Cavallo in Italy, southern Europe. Our results show evidence of a local production of shell beads for ornamental purposes as well as a trend toward higher homogeneity in tusk bead shape and size over time. The temporal interval of the layers of interest (45–40 ka) makes Cavallo the earliest known shell ornament making context in Europe
    • 

    corecore