162 research outputs found

    Spin-dependent Parton Distributions from Polarized Structure Function Data

    Get PDF
    In the past year, polarized deep inelastic scattering experiments at CERN and SLAC have obtained structure function measurements off proton, neutron and deuteron targets at a level of precision never before achieved. The measurements can be used to test the Bjorken and Ellis-Jaffe sum rules, and also to obtain information on the parton distributions in polarized nucleons. We perform a global leading-order QCD fit to the proton deep inelastic data in order to extract the spin-dependent parton distributions. By using parametric forms which are consistent with theoretical expectations at large and small xx, we find that the quark distributions are now rather well constrained. We assume that there is no significant intrinsic polarization of the strange quark sea. The data are then consistent with a modest amount of the proton's spin carried by the gluon, although the shape of the gluon distribution is not well constrained, and several qualitatively different shapes are suggested. The spin-dependent distributions we obtain can be used as input to phenomenological studies for future polarized hadron-hadron and lepton-hadron colliders.Comment: 23 pages, DTP/94/3

    Impaired Striatal Akt Signaling Disrupts Dopamine Homeostasis and Increases Feeding

    Get PDF
    DOI is broken and has been reportedThe prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address “food-abuse” disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. Methodology/Principal Findings We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. Conclusions/Significance Acquired disruption of brain insulin action may confer risk for and/or underlie “food-abuse” disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to “the fast food lifestyle” creates a cycle of disordered eating that cements pathological changes in DA signaling leading to weight gain and obesity.National Institutes of Health (U.S.) (grant DA14684)National Institutes of Health (U.S.) (grant DK085712

    In-medium modifications of the ππ\pi\pi interaction in photon-induced reactions

    Full text link
    Differential cross sections of the reactions (γ,ππ)(\gamma,\pi^\circ\pi^\circ) and (γ,ππ++ππ)(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-) have been measured for several nuclei (1^1H,12^{12}C, and nat^{\rm nat}Pb) at an incident-photon energy of EγE_{\gamma}=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the ππ\pi\pi invariant-mass distribution is found in the ππ\pi^\circ\pi^\circ channel. This dependence is not observed in the ππ+/\pi^\circ\pi^{+/-} channel and is consistent with an in-medium modification of the ππ\pi\pi interaction in the II=JJ=0 channel. The data are compared to π\pi-induced measurements and to calculations within a chiral-unitary approach

    A QCD Analysis of Polarised Parton Densities

    Get PDF
    We present the results of a QCD fit to global data on deep-inelastic polarised lepton-hadron scattering. We find that it is possible to fit the data with strongly broken SU(2) flavour for the polarised sea densities. This can easily be tested in WW production at polarised RHIC. The data fails to pin down polarised singlet sea quark and gluon densities. We explore the uncertainties in detail and show that improvement in statistics, achievable at polarised HERA for measurement of A_1 at moderately low values of x, have large payoffs in terms of the improvement in measurement of gluon and sea quark densities.Comment: Revtex 17 pages, 19 postscript figures. Analysis extended to SU(2) flavour symmetric and nonsymmetric se

    Empowerment or Engagement? Digital Health Technologies for Mental Healthcare

    Get PDF
    We argue that while digital health technologies (e.g. artificial intelligence, smartphones, and virtual reality) present significant opportunities for improving the delivery of healthcare, key concepts that are used to evaluate and understand their impact can obscure significant ethical issues related to patient engagement and experience. Specifically, we focus on the concept of empowerment and ask whether it is adequate for addressing some significant ethical concerns that relate to digital health technologies for mental healthcare. We frame these concerns using five key ethical principles for AI ethics (i.e. autonomy, beneficence, non-maleficence, justice, and explicability), which have their roots in the bioethical literature, in order to critically evaluate the role that digital health technologies will have in the future of digital healthcare

    First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV

    Full text link
    A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4π\pi detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability γ0\gamma_0 determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.Comment: 6 pages, 3 figures, 3 table

    Hypoinsulinemia Regulates Amphetamine-Induced Reverse Transport of Dopamine

    Get PDF
    The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been depleted of insulin with the diabetogenic agent streptozotocin (STZ). In vitro studies suggest that hypoinsulinemia may regulate the actions of AMPH by inhibiting the insulin downstream effectors phosphotidylinositol 3-kinase (PI3K) and protein kinase B (PKB, or Akt), which we have previously shown are able to fine-tune DAT cell-surface expression. Here, we demonstrate that striatal Akt function, as well as DAT cell-surface expression, are significantly reduced by STZ. In addition, our data show that the release of DA, determined by high-speed chronoamperometry (HSCA) in the striatum, in response to AMPH, is severely impaired in these insulin-deficient rats. Importantly, selective inhibition of PI3K with LY294002 within the striatum results in a profound reduction in the subsequent potential for AMPH to evoke DA efflux. Consistent with our biochemical and in vivo electrochemical data, findings from functional magnetic resonance imaging experiments reveal that the ability of AMPH to elicit positive blood oxygen level–dependent signal changes in the striatum is significantly blunted in STZ-treated rats. Finally, local infusion of insulin into the striatum of STZ-treated animals significantly recovers the ability of AMPH to stimulate DA release as measured by high-speed chronoamperometry. The present studies establish that PI3K signaling regulates the neurochemical actions of AMPH-like psychomotor stimulants. These data suggest that insulin signaling pathways may represent a novel mechanism for regulating DA transmission, one which may be targeted for the treatment of AMPH abuse and potentially other dopaminergic disorders

    Measurements of 12C(&#8594;γ,pp) photon asymmetries for Eγ= 200–450 MeV

    Get PDF
    The 12C (&#8594;γ ,pp) reaction has been studied in the photon energy range 200-450 MeV at the Mainz microtron MAMI-C, where linearly polarised photons were energy-tagged using the Glasgow-Mainz Tagged Photon Spectrometer and protons were detected in the Crystal Ball detector. The photon asymmetry Σ has been measured over a wider Eγ range than previous measurements. The strongest asymmetries were found at low missing energies where direct emission of nucleon pairs is expected. Cuts on the difference in azimuthal angles of the two ejected protons increased the magnitude of the observed asymmetries. At low missing energies the Σ data exhibit a strong angular dependence, similar to deuteron photodisintegration
    corecore