1,909 research outputs found

    Novel numerical optimisation of the Hohmann Spiral Transfer

    Get PDF
    As the revenue of commercial spacecraft platforms is generated by its payload, of which the capacity is maximised when fuel-mass is minimised, there is great interest in ensuring the fuel required for the trajectory to deliver the satellite to its working orbit is minimum. This paper presents an optimisation study of a novel orbit transfer, recently introduced by the authors through an analytical analysis, known as the Hohmann Spiral Transfer . The transfer is analogous to the bi-elliptic transfer but incorporating high and low-thrust propulsion. This paper has shown that substantial fuel mass savings are possible when utilizing the HST. For a transfer to Geostationary Earth Orbit it is shown that a fuel mass saving of approximately 320 kg (~ 5 - 10% of mwet ) is possible for a wet mass of 3000-6000 kg – whilst satisfying a time constraint of 90 days. Several trends in the gathered data are also identified that determine when the HST with high or low-thrust plane change should be used to offer the greatest fuel mass benefit

    Hohmann spiral transfer with inclination change performed by low-thrust system

    Get PDF
    This paper investigates the Hohmann Spiral Transfer (HST), an orbit transfer method previously developed by the authors incorporating both high and low-thrust propulsion systems, using the low-thrust system to perform an inclination change as well as orbit transfer. The HST is similar to the bi-elliptic transfer as the high-thrust system is first used to propel the spacecraft beyond the target where it is used again to circularize at an intermediate orbit. The low-thrust system is then activated and, while maintaining this orbit altitude, used to change the orbit inclination to suit the mission specification. The low-thrust system is then used again to reduce the spacecraft altitude by spiraling in-toward the target orbit. An analytical analysis of the HST utilizing the low-thrust system for the inclination change is performed which allows a critical specific impulse ratio to be derived determining the point at which the HST consumes the same amount of fuel as the Hohmann transfer. A critical ratio is found for both a circular and elliptical initial orbit. These equations are validated by a numerical approach before being compared to the HST utilizing the high-thrust system to perform the inclination change. An additional critical ratio comparing the HST utilizing the low-thrust system for the inclination change with its high-thrust counterpart is derived and by using these three critical ratios together, it can be determined when each transfer offers the lowest fuel mass consumption. Initial analyses have shown the HST utilizing low-thrust inclination change to offer the greatest benefit at low R2 (R2 - R1) and large AI (AI > 30º). A novel numerical optimization process which could be used to optimize the trajectory is also introduced

    A novel approach to hybrid propulsion transfers

    Get PDF
    This paper introduces a hybrid propulsion transfer termed a Hohmann Spiral, incorporating low and high-thrust technologies, analogous to the high-thrust bi-elliptic transfer. To understand this transfer fully it is compared to a standard high thrust Hohmann and a bi-elliptic transfer. Two critical specific impulse ratios are derived independent of time that determine the point this novel transfer consumes the exact amount of fuel as the two compared transfer types. It is found that these ratios are valid for both a circular and elliptical starting orbit so long as the apogee of the elliptical orbit coincides with the target orbit radius. An expression representing the fuel mass fraction is derived dependent of time in order to allow a bound solution space. The final part of this paper investigates two orbit transfer case studies, one is a Geostationary Transfer Orbit to Geostationary Earth Orbit based on the Alphabus platform specification and the other is from Low Earth Orbit to an orbit near the Moon. It is found the thrust required to complete the former transfer in a specified duration of 90 days exceeds current technology and as such provides a technology requirement for future spacecraft. It is found however, for spacecraft of significantly smaller mass, in the region of 1000kg, compared to Alphabus (Max. mass at Launch =8100kg), the transfer consumes the same fuel mass as a standard high-thrust Hohmann transfer with realistic low-thrust propulsion values (150mN, 300mN and 450mN) within the set duration of 90 days. In addition, it is shown that utilising uprated thrusters (210mN, 420mN and 630mN) a fuel mass saving can be made. This could provide a potential transfer alternative for future smaller spacecraft. The second case study is bound to a maximum thrust of 150mN, but the mission duration is not specified to highlight the variation. It is found that the HST offers fuel mass savings of roughly 5% compared to a standard high-thrust transfer and approximately 1.5% compared to a bi-elliptic transfer for different scenarios

    An extension and numerical analysis of the Hohmann spiral transfer

    Get PDF
    This paper extends previous work on the Hohmann Transfer Spiral (HST) by introducing a plane change into the analysis. An analytical expression determining the critical specific impulse incorporating a plane change is derived for both a circular and elliptical initial orbit. This expression determines the point at which the HST is equivalent in terms of fuel mass fraction to the compared Hohmann transfer. The expression assumes that the inclination change is performed by the high-thrust system. The numerical approach uses a blending method coupled with optimised weighting constants to deliver a locally optimal low-thrust trajectory. By comparing the analytical and numerical approaches, it is shown that the analytical can deliver a good estimation of the HST characteristics so long as little orbit eccentricity control is required. In the cases where orbit eccentricity control is required, the numerical approach should be used. A case study from an inclined Geostationary Transfer Orbit, equivalent to a high-latitude launch site, to Geostationary Earth Orbit has shown that the HST can offer a fuel mass saving approximately 5% of the launch mass. This equates to the mass penalty associated with this high-latitude launch site and therefore mimics the advantages of a low-latitude launch site at the expense of a longer transfer duration

    Aviation

    Get PDF

    The Old Testament in the Christian Church

    Get PDF

    New constitutive equations derived from a kinetic model for melts and concentrated solutions of linear polymers

    Get PDF
    In this paper, new constitutive equations for linear entangled polymer solutions and melts are derived from a recently proposed kinetic model (Fang et al. 2004) by using five closure approximations available in the literature. The simplest closure approximation considered is that due to Peterlin (1966). In this case, a mean-field-type Fokker-Planck equation underlying the evolution equation for an equilibrium averaged polymer segment orientation tensor is shown to be consistent with the fluctuation-dissipation theorem (Kubo et al. 1985). We compare the performance of the five new constitutive equations in their capacity to faithfully reproduce the predictions of the modified encapsulated FENE dumbbell model of Fang et al. (2004) for a number of shear and extensional flows. Comparisons are also made with the experimental data of Kahvand (1995) and Bhattacharjee et al. (2002, 2003). In the case of the Hinch-Leal and Bingham closures (Hinch and Leal 1976; Chaubal and Leal 1998) a combination with the quadratic closure of Doi (1981) is found to be necessary for stability in fast flows. The Hinch-Leal closure approximation, modified in this way, is found to outperform the other closures and its mathematical description is considerably simpler than that of the Bingham closur

    A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin's possible mode of action against SARS-CoV-2

    Get PDF
    Viral infections remain a major cause of economic loss with an unmet need for novel therapeutic agents. Ivermectin is a putative antiviral compound; the proposed mechanism is the inhibition of nuclear translocation of viral proteins, facilitated by mammalian host importins, a necessary process for propagation of infections. We systematically reviewed the evidence for the applicability of ivermectin against viral infections including SARS-CoV-2 regarding efficacy, mechanisms and selective toxicity. The SARS-CoV-2 genome was mined to determine potential nuclear location signals for ivermectin and meta-analyses for in vivo studies included all comparators over time, dose range and viral replication in multiple organs. Ivermectin inhibited the replication of many viruses including those in Flaviviridae, Circoviridae and Coronaviridae families in vitro. Real and mock nuclear location signals were identified in SARS-CoV-2, a potential target for ivermectin and predicting a sequestration bait for importin β, stopping infected cells from reaching a virus-resistant state. While pharmacokinetic evaluations indicate that ivermectin could be toxic if applied based on in vitro studies, inhibition of viral replication in vivo was shown for Porcine circovirus in piglets and Suid herpesvirus in mice. Overall standardized mean differences; 95% confidence intervals for ivermectin versus controls were: -4.43 (-5.81, -3.04), P < 0.00001. Based on current results, the potential for repurposing ivermectin as an antiviral agent is promising. However, further work is needed to reconcile in vitro studies with clinical efficacy. Developing ivermectin as an additional antiviral agent should be pursued with an emphasis on pre-clinical trials in validated models of infection

    Tonsillectomy is not a procedure of limited value - the unseen costs of tonsillitis and quinsy on hospital bed consumption.

    Get PDF
    Objectives To assess the impact of the introduction of the SIGN Clinical guidelines in 1999 and subsequent revision in 2005 on tonsillectomy, hospital admission with tonsillitis and peritonsillar abscess rates in four countries. Methods Retrospective analysis using English, Welsh, Australian and New Zealand National healthcare hospital admission databases between 2000 and 2013. Primary outcomes measures included tonsillectomy rates and hospital admission rates for tonsillitis and peritonsillar abscess. Secondary outcome measures included bed‐day usage in England and Wales. Linear forecasting was used to identify the potential impact of any trends. Results Following guideline introduction for tonsillectomy, a significant decline in tonsillectomy rates in England (P < 0.01) and Wales (P < 0.05) was seen. Hospital admissions for acute tonsil infections increased in England (P < 0.01) and Wales (P < 0.01). In Australia and New Zealand, tonsillectomy and admission for tonsillitis rates both increased (P < 0.01). During this time, the increased rate of admission for tonsillitis in England and Wales was significantly greater than Australasia (P < 0.01). Conclusions Following the introduction of these Clinical guidelines, there was a decrease in the rate of tonsillectomy in England and Wales and a presumed associated increase in admissions with tonsillitis. This did not occur in Australasia where tonsillectomy rates rose over time. If these trends continue, it is likely that they will have a significant deleterious impact on healthcare spending in the future
    corecore