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__________________________________________________________________________________

As the revenue of commercial spacecraft platforms is generated by its payload, of which the capacity is 

maximised when fuel-mass is minimised, there is great interest in ensuring the fuel required for the trajectory to 

deliver the satellite to its working orbit is minimum. This paper presents an optimisation study of a novel orbit 

transfer, recently introduced by the authors through an analytical analysis, known as the Hohmann Spiral 

Transfer . The transfer is analogous to the bi-elliptic transfer but incorporating high and low-thrust propulsion. 

This paper has shown that substantial fuel mass savings are possible when utilizing the HST. For a transfer to 

Geostationary Earth Orbit it is shown that a fuel mass saving of approximately        (              ) 

is possible for a wet mass of      –          whilst satisfying a time constraint of 90 days. Several trends in 

the gathered data are also identified that determine when the HST with high or low-thrust plane change should 

be used to offer the greatest fuel mass benefit. 

__________________________________________________________________________________

I.NOMENCLATURE 

g – standard gravitational acceleration, m/s
2
 

µ - gravitational constant, km
3
/s

2
 

mdry – spacecraft mass without fuel, kg 

mwet – spacecraft mass with total fuel, kg 

ΔVH(C/E) – high-thrust only system velocity 

requirement (circular/elliptical initial orbit), m/s 

ΔVHSTH(C/E) –HST high-thrust phase velocity 

requirement (circular/elliptical initial orbit), m/s 

ΔVHSTL – HST low-thrust phase velocity 

requirement, m/s 

IspH – high-thrust system specific impulse, s 

IspL – low-thrust system specific impulse, s 

ΔV – total velocity requirement, m/s 

ΔVi – velocity requirement to transfer between 

specified orbits, m/s 

ΔVf – velocity requirement to transfer between 

specified orbits, m/s 

υi – initial orbit velocity at beginning of specified 

transfer, m/s 

υf – target/intermediate orbit velocity at end of 

specified transfer, m/s 

υt1– transfer orbit velocity at node associated with 

initial orbit, m/s 

υt2– transfer orbit velocity at node associated with 

final orbit, m/s 

ΔI – total plane change, radians 

s –plane change at specified node, % 

Tr – spacecraft thrust, mN 

a – semi-major axis, m 

p – semi-latus rectum, m 

e – eccentricity 

i – inclination, radians 

υ – true anomaly, radians 

ω – argument of perigee, radians 

E – eccentric anomaly, radians 

rp – radius of perigee, m 

ra – radius of apogee, m 
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r – Instantaneous radius of spacecraft 

ri – initial orbit perigee radius, m 

rt – target orbit radius, m 

rc – intermediate orbit apogee radius, m 

rX – intermediate orbit perigee radius, m 

R1 – target /initial perigee orbit ratio 

R2 – intermediate apogee/initial perigee orbit ratio 

f – modified equinoctial element 

h – modified equinoctial element 

g – modified equinoctial element 

L – modified equinoctial element 

τ – auxiliary positive variable 

t – time, days 

tMAX – maximum allowable transfer time, days 

f – force, N 

λσ– locally optimal orientation vector for element σ 

 ̂ – locally optimal orientation unit vector for 

element σ 

λb– locally optimal orientation blended vector 

 ̂ – – locally optimal orientation blended vector 

 

Wσ– optimized weighting constant for each element 

σ 

Figure Acronyms  

HST HT C – Hohmann Spiral Transfer (HST) with 

high-thrust plane change, circular initial orbit 

HST HT E – Hohmann Spiral Transfer (HST) with 

high-thrust plane change, elliptical initial orbit 

HST LT C – Hohmann Spiral Transfer (HST) with 

low-thrust plane change, circular initial orbit 

HST LT E – Hohmann Spiral Transfer (HST) with 

low-thrust plane change, elliptical initial orbit 

II.INTRODUCTION 

As commercial satellites have an ever-increasing 

role in our everyday lives, there is great demand for 

more satellite platforms to accommodate the 

services offered such as telecommunications, 

Global Positioning System (GPS) and Earth-

monitoring. As the revenue of such platforms is 

generated by its payload, of which the capacity is 

maximised when fuel-mass is minimised, there is 

great interest in ensuring the fuel required for the 

trajectory to deliver the satellite to its working orbit 

is minimum. This paper presents an optimisation 

study of a novel orbit transfer, recently introduced 

by the authors through an analytical analysis, 

known as the Hohmann Spiral Transfer (HST). The 

transfer is analogous to the bi-elliptic transfer but 

incorporating high and low-thrust propulsion. The 

high-thrust system is used to propel the spacecraft 

beyond the target orbit to an intermediate orbit 

where the low-thrust system is activated and used 

to direct the spacecraft on a spiral trajectory in-

toward the target orbit. 

Previous research conducted by the authors has 

shown that the HST can outperform conventional 

transfer methods for different mission 

configurations, when the inclination change is 

performed by either the high or low-thrust system 

separately[1-4]. For this analytical analysis, certain 

constraints are necessary; the intermediate orbit has 

to remain circular to ensure that no eccentricity 

control is required and, in the case where the low-

thrust system performs the inclination change, the 

inclination manoeuvre is performed at the 

intermediate orbit before the low-thrust system is 

used to propel the spacecraft on a spiral trajectory 

to the target. Although this approach highlights the 

benefits of the transfer and has been validated 

numerically[2,3], it is not considered optimal due 

to the aforementioned constraints. This paper 

therefore develops the HST concept to be used in a 

numerical trajectory generation process which 

allows for an eccentric intermediate orbit and, in 

the case where the low-thrust system performs the 

plane change, the spiral-in and plane change 

manoeuvres to be coupled. An optimisation process 

is also developed to determine the minimum fuel 

mass transfers for given mission specifications and 

a transfer time constraint. A schematic of the HST, 

starting in a circular orbit and using a high-thrust 

plane change, is shown in Figure 1. It can be seen 

that the intermediate orbit apogee and perigee are 

variable thus removing the circular intermediate 

orbit constraint. The low-thrust spiral section is co-

planar as the high-thrust section performs the plane 

change in this example. The Hohmann and bi-

elliptic transfers are also shown as these are what 

the HST is compared to in the results section of this 

paper. 
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Figure 1 HST with varying intermediate orbit apogee and 

perigee. Hohmann and bi-elliptic transfers are also shown 

III. HST ANALYTICAL METHOD 

Several papers published by the authors [1-4] have 

developed the analytical analysis of the HST. This 

involved the generation of critical specific impulse 

ratios, which determine the system performance 

requirements to ensure the fuel mass of the HST is 

equal to that of the compared transfer (Hohmann or 

bi-elliptic). The critical ratios are derived from the 

fuel mass fractions of each transfer with the final 

form of the equation given in Eq. (1). 

    

    
 

      

   (   )        (   )
  (1) 

Using these critical ratios, it is therefore possible to 

identify a fuel mass benefit using the HST. As for 

any mission, the target and initial orbits are known, 

as well as the inclination between these two orbits. 

This means there is only one variable remaining in 

the critical specific impulse ratio: the intermediate 

orbit radius,    (the analytical constraint assumes 

this to be a circular orbit). In order to therefore 

introduce a fuel mass benefit, one or both of the 

following methods can be employed: 

1. Increase the specific impulse ratio of the 

system i.e. improve the performance of the 

low-thrust system. 

2. Increase the intermediate orbit radius,   , 
which in turn reduces the critical specific 

impulse ratio (the general trend of the 

function is to decrease with increasing    .) 

In general, the larger the spacecraft specific 

impulse ratio compared to the critical specific 

impulse ratio, the greater the fuel mass benefit.  

IV. HST NUMERICAL METHOD 

The numerical method has been created for the 

main application of optimising the low-thrust 

section of the HST. However it can be modified to 

include the high-thrust phase of the HST also. For 

this to work, it is assumed the high-thrust section is 

conducted through one or two impulsive burns. The 

first burn is used to enter the transfer orbit which 

takes the spacecraft beyond the target orbit. In the 

case where the low-thrust system is activated at the 

apogee of this orbit, this is the only high-thrust 

burn performed. In the case where the spacecraft 

enters an intermediate orbit at the apogee, a second 

high-thrust impulse is used to achieve this. It is 

worthwhile mentioning again that the analytical 

analysis assumed that the spacecraft enters a 

circular intermediate orbit at this far away point.  

Low-Thrust Phase Methodology 

Locally optimal control laws are used in the 

generation of the low-thrust phase of the HST 

within the numerical model. There are several 

locally optimal control laws which can be used to 

generate a trajectory, however as there are no orbit 

insertion requirements for the analysis in this paper 

only three or four control laws, depending on the 

optimisation problem, are required to conduct the 

trajectory calculation. Only three are utilised for the 

case where the HST employs a high-thrust plane 

change: the semi-major axis, eccentricity and 

radius of pericentre. The low-thrust section is 

therefore co-planar. For the case where the low-

thrust system performs the plane change, the high-

thrust phase is co-planar and the semi-major axis, 

eccentricity, inclination and radius of pericentre 

control laws are used to generate the low-thrust 

phase trajectory. If there are explicit mission 

constraints e.g. a specific insertion point on the 

geostationary belt, then additional control laws, 

including the argument of perigee and longitude of 

ascending node, can be used. By using only the 

minimum number of controls laws required to 

generate a trajectory ensures the software is 

optimized to suit the mission specification and the 

calculation time of the software is kept to a 

minimum.  

Locally Optimal Control Laws 

As the rate of change of an element can be easily 

calculated, a locally optimal control law can be 

generated. These control laws aim to maximize the 

instantaneous rate of the element and provide the 

required thrust vector in a closed analytical form. 

The advantage of these control laws is the speed at 

which they can be implemented in trajectory 

models. The disadvantage is the sub-optimal nature 

of them and how this affects the resulting 

solution[5-6]. The variational equation of the 

element concerned is shown in Eq. (2). 
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    ̂   (2) 

where σ represents the respective element. The 

required force,   in the Radial, Transverse and 

Normal Axes (RTN), to maximise the rate of 

change of σ, is a unit vector defined by     By 

maximizing the force along   , the instantaneous 

rate of σ is also maximized. The variational 

equations are defined in Gaussian form as this 

allows each component of the perturbing 

acceleration to be identified[7,8]. 

Semi-Major Axis Control Law 

The semi-major axis variational equation is given 

in Eq. (3) in classical elements. 

  

  
 

   

√  
[   ] [

     
       

 
]  (3) 

By identifying    and converting to modified 

equinoctial elements[9], the maximized direction 

vector is given in Eq. (4). 
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]  

(4) 

This can now be used to generate a locally optimal 

control law which focuses on maximizing the semi-

major axis. This is also known as the energy gain 

control law as it gives a locally optimal variation in 

orbit energy. 

Eccentricity Control Law 

The eccentricity variational equation is given in Eq. 

(5) and is defined in classical elements. 
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]  (5) 

By identifying    and converting to modified 

equinoctial elements, the maximized thrust 

direction vector is given in Eq. (6). 
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Radius of Pericentre Control Law 

The radius of pericentre equation is given in Eq. (7) 

in classical elements. It can be seen that this 

variational equation is made up of both the semi-

major axis and eccentricity equations. 
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(7) 

By identifying     and converting to modified 

equinoctial elements, the maximized thrust 

direction vector is given in Eq. (8). 
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(8) 

Inclination Control Law 

The inclination control law varies to the previously 

defined. It depends only on the out of plane 

perturbation and as such a switching term is 

required in order to maintain the chosen rate of 

change, either positive or negative. It will change 

according to the argument of latitude. Eq. (9) gives 

the variational equation for inclination defined in 

classical elements. 

  

  
 

 

√  
[   ] [

 
 

    (   )
]  (9) 

Identifying λi, converting to modified equinoctial 

elements and applying the switching term as 

discussed, the maximized thrust direction vector is 

given in Eq. (10). 

   [
 
 

   [   (   )]
]  (10) 
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]  

where    √      

Control Law Blending Method 

As there are a maximum of four control laws 

involved in the trajectory generation process, each 

with their own maximized thrust vector, it is 

necessary to ‘blend’ these to generate a thrust 

vector that accommodates all the mission 

constraints. The blending method adopted for the 

numerical approach derives from a form of 

averaging that has previously been applied to solar 

sail trajectory design known as A
n
D (Accessibility 

and Deficit) blending[6,10]. The method is adopted 

here to suit low-thrust technologies without the 

limitations of a sail i.e. the thrust can be directed in 

any direction as and when it is needed. Several 

blending methods have previously been suggested: 

some which utilize weighting constants described 

as a function of time from the initial epoch[11,12]. 

The method used in this analysis is similar to the 

approach adopted by Petropoulos[13], which is 

independent of time and thus has the advantage of 

reduced simulation time as the weighting constants 

do not have to be calculated at every time-step.  

The method used in this paper calculates the deficit 

(time to target) of each control law based on the 

maximized thrust vector if it were solely used and 

assuming a constant rate of change. These are 

normalized with respect to the largest, resulting 

with each control law receiving a score between 

zero and one: zero meaning the control law has 

achieved its target and one meaning it is furthest, in 

terms of time, from its target value. The control 

laws are then multiplied by an optimized weighting 

constant,   , - discussed in detail in the 

optimization section - based on mission 

specification, before finally being blended using 

the averaging technique as is shown in Eq. (11). 

This now forms the maximized thrust direction 

vector; all symbols have the same meanings as 

previously discussed. 

   
∑   ̂ 
∑  

 

where            

(11) 

High-Thrust Phase Methodology 

As the numerical code is predominantly set up to 

accommodate low-thrust trajectory design, it is 

necessary to modify it so that the high-thrust phase 

can be included to ensure this can also be 

optimized. The high-thrust phase is based on a 

‘minimum energy’ two-impulse Hohmann transfer. 

For the case where the high-thrust phase also 

performs the plane change, it is assumed that this is 

split over the two impulse burns and conducted as a 

combined maneuver as is shown in Figure 1. This 

has been shown to be more fuel effective than 

performing each maneuver separately[14]. The 

method used to determine the optimal plane change 

split between the two impulses is described in the 

proceeding section. To ensure there is no 

unintended alteration to other orbital elements, it is 

assumed the line of nodes aligns with the major 

axis of the orbit. 

It should be noted that this same plane change 

methodology is also applied to the compared 

transfer; Hohmann or bi-elliptic. For the bi-elliptic 

transfer, the velocity requirement is calculated for a 

plane change split across the first and second 

impulses as well as across the second and third 

impulses. For the case where the plane change is 

split across the first and second impulses, the third 

impulse is co-planar and similarly, for the case 

where the plane change is split across the second 

and third impulses, the first impulse is co-planar. 

The case where the plane change is split across the 

first and third impulses is not considered as it is 

assumed the second impulse should always be 

included as this is furthest from the central body 

and hence, should have a lower velocity 

requirement when performing the plane change. 

The case where the bi-elliptic performs the plane 

change over the first two impulses is shown in 

Figure 1, along with the Hohmann transfer. 

Plane Change Split Methodology 

In previous papers concerning the HST, the plane 

change split has been performed analytically to suit 

the analytical make-up of the paper[2,3]. Although 

the error associated with this was validated [15], 

this paper determines the optimal inclination split 

numerically using a Newton-Rhapson method[16]. 

To do this it is necessary to first determine the total 

velocity requirement of the high-thrust phase, 

including the plane change, as shown in Eq. (12). 

This is derived based on the law of cosines[17]. 

           

√  
     

           (   )   

√  
     

           ((   )  )  

(12) 

Where   represents the percentage split of plane 

change at the first impulse. Equation (12) can then 
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be partially differentiated with respect to   and set 

equal to zero to determine when the function is a 

minimum. The resultant function is shown in Eq. 

(13). 

       
           ((   )  )

        
  (13) 

As        appears on both sides, the newton 

rhapson method must be used to iterate and find a 

solution. 

V. OPTIMIZATION METHOD 

Algorithm 

The optimization algorithm selected uses a 

constrained nonlinear optimization technique 

adapting a sequential quadratic programming 

(SQP) method. This is selected as it has a strict 

feasibility with respect to the bounds meaning 

every iterative step is taken within the specified 

limits[18]. This is necessary for this study as the 

constants cannot be negative otherwise the 

trajectory generation will fail. The algorithm is 

employed through the optimization tool, fmincon, 

which is part of the Matlab
®
 mathematical 

programming software suite. The platform used in 

the study has a 64-bit operating system with an 

Intel ® Core ™ i7-3615QM CPU operating at 2.3 

GHZ with 8 GB of RAM. 

Application 

The optimisation procedure adopted within this 

paper can be split into two parts: 

1. HST high-thrust phase optimisation 

2. HST low-thrust phase optimisation 

The HST high-thrust phase optimisation involves 

two variables, an orbit ratio   (    ⁄ ) and the 

intermediate orbit eccentricity,  . This orbit ratio is 

introduced to the analysis, along with   (    ⁄ ) to 

simplify the velocity requirement equations. The 

orbit ratio,   , can be used by the optimiser to 

increases/decrease the intermediate orbit apogee in 

order to reduce the velocity requirement of the 

high-thrust phase. Additionally, the eccentricity,  , 

of this intermediate orbit can also be modified by 

the optimiser to lower the velocity requirement of 

the high-thrust phase.  

The HST low-thrust phase optimisation involves a 

maximum of four variables, or weighting constants 

as described previously in the discussion regarding 

control law blending. For the case where the high-

thrust phase performs the plane change, only three 

constants are required and are applied to the semi-

major axis, eccentricity and radius of pericentre 

control laws. These constants are applied by the 

optimiser to effectively prioritise each control law 

dependent on the mission specification. For the 

case where the low-thrust system performs the 

plane change, four constants are used. In addition 

to the three control laws discussed previously, the 

inclination control law is also given a constant. The 

use of these constants reduces optimisation 

complexity as each control law is prioritised before 

each trajectory calculation as opposed to each 

control law being prioritised at every time-step. 

In addition to the optimiser determining the 

weighting constants, it has to satisfy an inequality 

constraint. The constraint function used within the 

optimisation is detailed in Eq. (14). 

         (14) 

Where      is the maximum allowable transfer 

time and is determined by the mission 

specification. The current iteration transfer time is 

defined as  .  

Adaptation of Intermediate Orbit 

To include the intermediate orbit eccentricity as an 

optimization parameter, it is necessary to modify 

the equation representing the intermediate orbit 

velocity. From fundamental astrodynamics, the 

definition of the radius of perigee and apogee are 

given in Eqns. (15) and (16)[19]. 

  (   )   (15) 

  (   )   (16) 

Where   is the semi-major and is defined in Eq. 

(17). 

  
     

 
  (17) 

By substituting Eqns. (16) and (17) into (15), the 

radius of pericentre, for the intermediate orbit with 

apogee radius,   , is defined in Eq. (18). 

        (
 

   
  )   (18) 

Note that this orbit perigee will be defined as    

from this point forward. It is noted when   
        . This parameter can then be used when 

deriving the velocity requirement for each HST 

case, as is shown in the proceeding sections. 
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Circular Initial Orbit – HT Plane Change 

For the case where the high-thrust system performs 

the plane change, the velocity requirement, with the 

inclusion of    as described previously, is defined 

in Eq. (19). The optimum percentage plane change 

split is calculated as described previously in Eq. 

(13), with the orbit velocities relevant to the 

transfer being considered. 

√
 

  
√  [√  

   

    
 √

   

    
   (   )  

√   
  
 

 

      
 √

   

  
√

 

      
   ((   )  )]  

(19) 

Elliptical Initial Orbit – HT Plane Change 

For the HST with high-thrust plane change 

initiating in an elliptical orbit, the velocity 

requirement, utilizing    as detailed in the previous 

section, is defined in Eq. (20). The orbit ratios 

detailed earlier are also used. 

√
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[√  √
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 √
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   ((   )  )]  

(20) 

Circular Initial Orbit – LT Plane Change 

For the case where the low-thrust phase of the HST 

performs the plane change, the high-thrust phase 

velocity requirement, with substitution of    and 

the orbit ratios defined previously, is defined in Eq. 

(21). 

√
 

  
√  [√

   

    
 √

   

  
 √

 

      
  ]  (21) 

Elliptical Initial Orbit – LT Plane Change 

The high-thrust phase velocity requirement for the 

case where the initial orbit is elliptical and the low-

thrust phase of the HST performs the plane change, 

is defined in Eq. (22). The equations for    and the 

orbit ratios defined previously have been used to 

aid the optimization procedure. 

√
 

  
√  [√

   

    
 √

   

  
 √

   

    
 √

 

      
]  (22) 

VI. RESULTS 

To demonstrate the capability of the optimization 

method described in this paper, a case study can be 

performed. The specification for this study is 

detailed in Table 1. 

HST Optimization Study 
Wet Mass Range,      (kg) 3000 - 6000 

Plane Change Range,    ( ) 0.001 - 29.001 

Initial Orbit Perigee Radius,    (km) 6571(LEO) 

Target Orbit Radius,    (km) 42157 (GEO) 

High-thrust system specific impulse 

(s) 
325 

Low-thrust system specific impulse 

(s) 
4300 

Thrust [2 x T6 thrusters - operating 

at 145mN each],    (mN) 
290 

Maximum allowable transfer time 

(days) 
90 

Table 1 HST optimization study specification  

A transfer from Low-Earth Orbit (LEO)/ 

Geostationary Transfer Orbit (GTO) to 

Geostationary Earth Orbit (GEO) is considered as 

this is a common transfer for large spacecraft. If the 

initial orbit is circular then the transfer is LEO-

GEO and if the initial orbit is elliptical then the 

transfer is GTO-GEO. For the case of the GTO-

GEO it is assumed the HST and bi-elliptic’s first 

high-thrust impulse is performed at the initial orbit 

perigee. The Hohmann transfer is performed as a 

one impulse manoeuvre at the initial orbit apogee. 

This impulse combines both the orbit raise and 

plane change. For the analysis, the high-thrust 

specific impulse is based on the 500N Bi-propellant 

European Apogee Motor
1
 and is a standard value 

amongst current technology[20]. The low-thrust 

system is based on the T6 thruster used in dual 

configuration [21,22]. A range of wet masses and 

plane changes are considered to give an overview 

of the HST performance. A selection of common 

GEO launch site latitudes are shown in Table 2 to 

relate the result to plausible launch scenarios. 

 

Geostationary Earth Orbit Launch Site Latitudes 
Cape Canaveral, USA , ( ) 28.3 

Kourou, French Giuana, ( ) 5.32 

Sriharikota, India, ( ) 13.47 

Xichang, China, ( ) 28.12 

Table 2 Common geostationary earth orbit launch site 
latitudes[23] 

Figures 2 - 4 represent the fuel mass savings for the 

respective wet masses detailed in each figure title. 

The fuel mass saving is the difference between the 

HST dry mass and the largest dry mass delivered to 

                                                      
1
 http://cs.astrium.eads.net/sp/spacecraft-

propulsion/apogee-motors/500n-apogee-motor.html 

http://cs.astrium.eads.net/sp/spacecraft-propulsion/apogee-motors/500n-apogee-motor.html
http://cs.astrium.eads.net/sp/spacecraft-propulsion/apogee-motors/500n-apogee-motor.html
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the target orbit by any of the high-thrust only 

transfer comparisons. Each HST transfer is 

classified by the acronym detailed in the legend and 

defined at the beginning of the paper. Where there 

is a green symbol present, it infers the specified 

transfer has met the ninety day transfer constraint 

and where there is a red symbol, it implies the 

transfer did not meet the constraint. It should be 

noted that these results do not account for error 

magnitude when the time constraint is not satisfied.  

 
Figure 2 Fuel mass saving compared to largest high-thrust only 

transfer for              

 
Figure 3 Fuel mass saving compared to largest high-thrust only 

transfer for              

 
Figure 4 Fuel mass saving compared to largest high-thrust only 

transfer for              

From all three figures it is clear that the HST, 

utilizing a high-thrust plane change (circular or 

elliptical initial orbit), can deliver the largest fuel 

mass benefit and maintains a fairly constant fuel 

mass saving for all three wet masses considered. It 

can be seen that this is also true for the HST 

utilizing low-thrust plane change, starting in a 

circular orbit, for a wet mass of        . For the 

two remaining wet mass cases however it can be 

seen that there is a sharp decline in fuel mass 

saving with increasing plane change for both initial 

orbit cases considering the HST with low-thrust 

plane change. This would suggest that at smaller 

wet masses (        ), the HST with low-thrust 

plane change may be able to contend with the HST 

with high-thrust plane change. It is also evident 

with increasing plane change that the HST, 

utilizing low-thrust plane change, struggles to 

satisfy the transfer time constraint (identified by the 

increase in red markers). This is further accentuated 

with increasing wet mass and in some cases the 

high-thrust only transfer out-performs this version 

of the HST.  

Table 3 gives a summary of the largest fuel mass 

savings for each wet mass case considered which 

satisfies the time constraint.  

Max. Fuel Mass Savings Summary 

     Transfer 
Saving (kg 

/         ) 
Plane 

Change ( ) 
        HST HT C 320.07 / 10.67 3.001 

        HST HT E 317.99 / 9.09 0.001 

        HST HT C 321.6 / 8.04 2.001 

        HST HT C 321.6 / 7.15 1.001 

        HST HT C 320.73 / 6.41 1.001 

        HST HT C 320.57 / 5.83 0.001 

        HST HT C 319.83 / 5.33 2.001 

Table 3 Largest fuel mass savings that meet the ninety day 
transfer constraint with specified transfer and plane change 

It can be seen that the mass saving (  ) is fairly 

constant for all wet masses considered but the 

percentage saving of the wet mass  (     
   
) is 

gradually decreasing with increasing wet mass. It is 

also found that the largest fuel mass savings occur 

at small plane change values and the HST with 

high-thrust plane change, starting in a circular 

orbit, offers the largest fuel mass saving for six out 

of seven case studies.  

Figures 5-7 detail the    orbit ratio for each 

transfer comparison. It can be seen a wet mass of 

        follows the general trend of: increasing 

plane change, increasing orbit ratio. This trend is 

visible in the remaining two figures for increased 

wet mass, however it only starts to transpire at 

larger plane change values. It can also be seen that 

with increasing wet mass, there is an increase in the 

number of transfers that do not meet the transfer 

constraint: similar to the figures displaying fuel 

mass saving. It can be seen that the largest    

value is approximately 13 and is achieved by the 

HST with low-thrust plane change starting in a 

circular initial orbit. It is expected that the lowest 

wet mass would achieve the greatest orbit ratio due 
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to the low-thrust system acceleration being the 

greatest for this case.  

 
Figure 5 HST optimized    orbit ratio for              

 
Figure 6 HST optimized    orbit ratio for              

 
Figure 7 HST optimized    orbit ratio for              

Figures 8-10 show the trends of the intermediate 

orbit eccentricity.  

 
Figure 8 Intermediate orbit eccentricity for              

 
Figure 9 Intermediate orbit eccentricity for              

 
Figure 10 Intermediate orbit eccentricity for              

It can be seen with increasing wet mass the 

maximum eccentricity in all HST variations 

reduces. It is also found that the general trend of 

the HST with high-thrust plane change (circular 

and elliptical initial orbit) is to increase 

intermediate orbit eccentricity with increasing 

plane change. Conversely, the HST with low-thrust 

plane change (circular and elliptical initial orbit) 

tends to decrease intermediate orbit eccentricity 

with increasing plane change. 

VII.CONCLUSION 

This paper has shown that substantial fuel mass 

savings are possible when utilizing the Hohmann 

Spiral Transfer (HST). For a transfer to 

Geostationary Earth Orbit it has been shown that a 

fuel mass saving of approximately        

(              ) is possible for a wet mass 

of      –          which satisfies a time 

constraint of        . The HST with high-thrust 

plane change, starting in a circular initial orbit, 

offered the largest fuel mass saving for six out of 

seven case studies. With such a large fuel mass 

saving, it is thought a platform’s revenue could be 

improved by increasing the number of scientific 

payloads on-board. 

The general trends of the data presented have 

suggested that the HST with high-thrust plane 

change (circular or elliptical initial orbit) should be 

used for wet masses greater than        . 

However, at small wet masses, (        ), the 
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HST with low-thrust plane change (circular or 

elliptical initial orbit) may be able to compete with 

the HST high-thrust plane change. 

The following trends have also been identified for 

the HST with high-thrust plane change (circular 

and elliptical initial orbit):  

 As plane change increases  

o the fuel mass saving stays fairly constant. 

o The intermediate orbit ratio    tends to 

increase. 

o The intermediate orbit eccentricity tends 

to increase. 

The following trends have also been identified for 

the HST with low-thrust plane change (circular and 

elliptical initial orbit):  

 As plane change increases  

o the fuel mass saving reduces 

o The intermediate orbit ratio    tends to 

increase. 

o The intermediate orbit eccentricity tends 

to decrease. 

o The number of time constraint failures 

increases. 

VIII. FUTURE WORK 

Due to the sub-optimal nature of the high-thrust 

impulsive method, it is foreseen that future work 

will include the implementation of a method which 

optimizes each high-thrust impulsive burn in 

addition to the plane change distribution,  , orbit 

ratio,   , and intermediate orbit eccentricity,  . As 

the methodology adopted for the HST high-thrust 

phase is the same used to determine the velocity 

requirement for the high-thrust only transfers 

(Hohmann and bi-elliptic), it is thought that the fuel 

mass saving will most probably stay the same. 

However, it is expected the overall dry mass 

delivered to the target will increase. 

It is noted that this methodology, although adopted 

in this analysis for the HST, could be used to 

rapidly generate hybrid propulsion transfers of any 

nature. Future work will therefore consider 

different hybrid propulsion transfers and determine 

the feasibility of this methodology in comparison 

with other algorithms such as SEPSPOT[24]. A 

sensitivity study will also be performed to 

determine the error associated with the 

optimization process. 
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