19,573 research outputs found

    Urine metabolomic analysis to detect metabolites associated with the development of contrast induced nephropathy.

    Get PDF
    ObjectiveContrast induced nephropathy (CIN) is a result of injury to the proximal tubules. The incidence of CIN is around 11% for imaging done in the acute care setting. We aim to analyze the metabolic patterns in the urine, before and after dosing with intravenous contrast for computed tomography (CT) imaging of the chest, to determine if metabolomic changes exist in patients who develop CIN.MethodsA convenience sample of high risk patients undergoing a chest CT with intravenous contrast were eligible for enrollment. Urine samples were collected prior to imaging and 4 to 6 hours post imaging. Samples underwent gas chromatography/mass spectrometry profiling. Peak metabolite values were measured and data was log transformed. Significance analysis of microarrays and partial least squares was used to determine the most significant metabolites prior to CT imaging and within subject. Analysis of variance was used to rank metabolites associated with temporal change and CIN. CIN was defined as an increase in serum creatinine level of ≥ 0.5 mg/dL or ≥ 25% above baseline within 48 hours after contrast administration.ResultsWe sampled paired urine samples from 63 subjects. The incidence of CIN was 6/63 (9.5%). Patients without CIN had elevated urinary citric acid and taurine concentrations in the pre-CT urine. Xylulose increased in the post CT sample in patients who developed CIN.ConclusionDifferences in metabolomics patterns in patients who do and do not develop CIN exist. Metabolites may be potential early identifiers of CIN and identify patients at high-risk for developing this condition prior to imaging

    The Motion of a Body in Newtonian Theories

    Get PDF
    A theorem due to Bob Geroch and Pong Soo Jang ["Motion of a Body in General Relativity." Journal of Mathematical Physics 16(1), (1975)] provides the sense in which the geodesic principle has the status of a theorem in General Relativity (GR). Here we show that a similar theorem holds in the context of geometrized Newtonian gravitation (often called Newton-Cartan theory). It follows that in Newtonian gravitation, as in GR, inertial motion can be derived from other central principles of the theory.Comment: 12 pages, 1 figure. This is the version that appeared in JMP; it is only slightly changed from the previous version, to reflect small issue caught in proo

    A family of filters to search for frequency dependent gravitational wave stochastic backgrounds

    Full text link
    We consider a three dimensional family of filters based on broken power law spectra to search for gravitational wave stochastic backgrounds in the data from Earth-based laser interferometers. We show that such templates produce the necessary fitting factor for a wide class of cosmological backgrounds and astrophysical foregrounds and that the total number of filters required to search for those signals in the data from first generation laser interferometers operating at the design sensitivity is fairly smallComment: 4 pages, 4 figures, uses iopart.cls, accepted for publications on Classical and Quantum Gravity (Special Issue, Proceedings of Amaldi 2003

    Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition

    Full text link
    In this paper, we consider the infinite-dimensional integration problem on weighted reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition of ANOVA-type. The weights model the relative importance of different groups of variables. We present new randomized multilevel algorithms to tackle this integration problem and prove upper bounds for their randomized error. Furthermore, we provide in this setting the first non-trivial lower error bounds for general randomized algorithms, which, in particular, may be adaptive or non-linear. These lower bounds show that our multilevel algorithms are optimal. Our analysis refines and extends the analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K. Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve substantially on the error bounds presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure

    Global monopoles in dilaton gravity

    Get PDF
    We analyse the gravitational field of a global monopole within the context of low energy string gravity, allowing for an arbitrary coupling of the monopole fields to the dilaton. Both massive and massless dilatons are considered. We find that, for a massless dilaton, the spacetime is generically singular, whereas when the dilaton is massive, the monopole generically induces a long range dilaton cloud. We compare and contrast these results with the literature.Comment: 15 pages, 3 figures, version to appear in Class Quant Gra

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement

    Get PDF
    We estimate the number of templates, computational power, and storage required for a one-step matched filtering search for gravitational waves from inspiraling compact binaries. These estimates should serve as benchmarks for the evaluation of more sophisticated strategies such as hierarchical searches. We use waveform templates based on the second post-Newtonian approximation for binaries composed of nonspinning compact bodies in circular orbits. We present estimates for six noise curves: LIGO (three configurations), VIRGO, GEO600, and TAMA. To search for binaries with components more massive than 0.2M_o while losing no more than 10% of events due to coarseness of template spacing, initial LIGO will require about 1*10^11 flops (floating point operations per second) for data analysis to keep up with data acquisition. This is several times higher than estimated in previous work by Owen, in part because of the improved family of templates and in part because we use more realistic (higher) sampling rates. Enhanced LIGO, GEO600, and TAMA will require computational power similar to initial LIGO. Advanced LIGO will require 8*10^11 flops, and VIRGO will require 5*10^12 flops. If the templates are stored rather than generated as needed, storage requirements range from 1.5*10^11 real numbers for TAMA to 6*10^14 for VIRGO. We also sketch and discuss an algorithm for placing the templates in the parameter space.Comment: 15 pages, 4 figures, submitted to Phys. Rev.

    Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform

    Get PDF
    We prove that the oft-used stationary-phase method gives a very accurate expression for the Fourier transform of the gravitational-wave signal produced by an inspiraling compact binary. We give three arguments. First, we analytically calculate the next-order correction to the stationary-phase approximation, and show that it is small. This calculation is essentially an application of the steepest-descent method to evaluate integrals. Second, we numerically compare the stationary-phase expression to the results obtained by Fast Fourier Transform. We show that the differences can be fully attributed to the windowing of the time series, and that they have nothing to do with an intrinsic failure of the stationary-phase method. And third, we show that these differences are negligible for the practical application of matched filtering.Comment: 8 pages, ReVTeX, 4 figure
    • …
    corecore