We estimate the number of templates, computational power, and storage
required for a one-step matched filtering search for gravitational waves from
inspiraling compact binaries. These estimates should serve as benchmarks for
the evaluation of more sophisticated strategies such as hierarchical searches.
We use waveform templates based on the second post-Newtonian approximation for
binaries composed of nonspinning compact bodies in circular orbits. We present
estimates for six noise curves: LIGO (three configurations), VIRGO, GEO600, and
TAMA. To search for binaries with components more massive than 0.2M_o while
losing no more than 10% of events due to coarseness of template spacing,
initial LIGO will require about 1*10^11 flops (floating point operations per
second) for data analysis to keep up with data acquisition. This is several
times higher than estimated in previous work by Owen, in part because of the
improved family of templates and in part because we use more realistic (higher)
sampling rates. Enhanced LIGO, GEO600, and TAMA will require computational
power similar to initial LIGO. Advanced LIGO will require 8*10^11 flops, and
VIRGO will require 5*10^12 flops. If the templates are stored rather than
generated as needed, storage requirements range from 1.5*10^11 real numbers for
TAMA to 6*10^14 for VIRGO. We also sketch and discuss an algorithm for placing
the templates in the parameter space.Comment: 15 pages, 4 figures, submitted to Phys. Rev.