1,488 research outputs found

    Rich Cluster and Non-Cluster Radio Galaxies & the (P,D) Diagram for a Large Number of FR I and FR II Sources

    Full text link
    We present a comparison of the optical and radio properties of radio sources inside and outside the cores of rich clusters from combined samples of more than 380 radio sources. We also examine the nature of FR I and FR II host galaxies, and in particular, we illustrate the importance of selection effects in propagating the misconception that FR I's and FR II's are found in hosts of very different optical luminosity. Given the large sample size, we also discuss the power-size (P,D) distributions as a function of optical luminosity.Comment: to appear in Life Cycles of Radio Galaxies, ed. J. Biretta et al., New Astronomy Reviews; 6 pages, including 2 figure

    A first principles study of sub-monolayer Ge on Si(001)

    Get PDF
    Experimental observations of heteroepitaxial growth of Ge on Si(001) show a (2xn) reconstruction for sub-monolayer coverages, with dimer rows crossed by missing-dimer trenches. We present first-principles density-functional calculations designed to elucidate the energetics and relaxed geometries associated with this reconstruction. We also address the problem of how the formation energies of reconstructions having different stoichiometries should be compared. The calculations reveal a strong dependence of the formation energy of the missing-dimer trenches on spacing n, and demonstrate that this dependence stems almost entirely from elastic relaxation. The results provide a natural explanation for the experimentally observed spacings in the region of n \~ 8.Comment: 13 pages, 4 figures, submitted to Surface Scienc

    Josephson effect test for triplet pairing symmetry

    Full text link
    The critical current modulation and the spontaneous flux of the vortex states in corner Josephson junctions between Sr2_2RuO4_4 and a conventional s-wave superconductor are calculated as a function of the crystal orientation, and the magnetic field. For Sr2_2RuO4_4 we assume two nodeless p-wave pairing states. Also we use the nodal ff-wave states B1gĂ—EuB_{1g}\times E_u and B2gĂ—EuB_{2g} \times E_u, and one special p-wave state having line nodes. It is seen that the critical current depends solely on the topology of the gap.Comment: 22 pages, 12 figure

    Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    Get PDF
    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.Comment: 11 pages, including 5 encapsulated postscript figure

    A Mathematical Model of Liver Cell Aggregation In Vitro

    Get PDF
    The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work

    Remote Sensing D/H Ratios in Methane Ice: Temperature-Dependent Absorption Coefficients of CH3D in Methane Ice and in Nitrogen Ice

    Full text link
    The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer solar system bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 \mum to study CH3D bands at 2.47, 2.87, and 4.56 \mum, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.Comment: 17 pages, 7 figure
    • …
    corecore