10,882 research outputs found

    Phagocytosis in the brain: homeostasis and disease

    Get PDF
    Microglia are resident macrophages of the central nervous system and significantly contribute to overall brain function by participating in phagocytosis during development, homeostasis, and diseased states. Phagocytosis is a highly complex process that is specialized for the uptake and removal of opsonized and non-opsonized targets, such as pathogens, apoptotic cells, and cellular debris. While the role of phagocytosis in mediating classical innate and adaptive immune responses has been known for decades, it is now appreciated that phagocytosis is also critical throughout early neural development, homeostasis, and initiating repair mechanisms. As such, modulating phagocytic processes has provided unexplored avenues with the intent of developing novel therapeutics that promote repair and regeneration in the CNS. Here, we review the functional consequences that phagocytosis plays in both the healthy and diseased CNS, and summarize how phagocytosis contributes to overall pathophysiological mechanisms involved in brain injury and repair

    On modular decompositions of system signatures

    Get PDF
    Considering a semicoherent system made up of nn components having i.i.d. continuous lifetimes, Samaniego defined its structural signature as the nn-tuple whose kk-th coordinate is the probability that the kk-th component failure causes the system to fail. This nn-tuple, which depends only on the structure of the system and not on the distribution of the component lifetimes, is a very useful tool in the theoretical analysis of coherent systems. It was shown in two independent recent papers how the structural signature of a system partitioned into two disjoint modules can be computed from the signatures of these modules. In this work we consider the general case of a system partitioned into an arbitrary number of disjoint modules organized in an arbitrary way and we provide a general formula for the signature of the system in terms of the signatures of the modules. The concept of signature was recently extended to the general case of semicoherent systems whose components may have dependent lifetimes. The same definition for the nn-tuple gives rise to the probability signature, which may depend on both the structure of the system and the probability distribution of the component lifetimes. In this general setting, we show how under a natural condition on the distribution of the lifetimes, the probability signature of the system can be expressed in terms of the probability signatures of the modules. We finally discuss a few situations where this condition holds in the non-i.i.d. and nonexchangeable cases and provide some applications of the main results

    Evolutionary origins and development of saw-teeth on the sawfish and sawshark rostrum (Elasmobranchii; Chondrichthyes)

    Get PDF
    A well-known characteristic of chondrichthyans (e.g. sharks, rays) is their covering of external skin denticles (placoid scales), but less well understood is the wide morphological diversity that these skin denticles can show. Some of the more unusual of these are the tooth-like structures associated with the elongate cartilaginous rostrum ‘saw’ in three chondrichthyan groups: Pristiophoridae (sawsharks; Selachii), Pristidae (sawfish; Batoidea) and the fossil Sclerorhynchoidea (Batoidea). Comparative topographic and developmental studies of the ‘saw-teeth’ were undertaken in adults and embryos of these groups, by means of three-dimensional-rendered volumes from X-ray computed tomography. This provided data on development and relative arrangement in embryos, with regenerative replacement in adults. Saw-teeth are morphologically similar on the rostra of the Pristiophoridae and the Sclerorhynchoidea, with the same replacement modes, despite the lack of a close phylogenetic relationship. In both, tooth-like structures develop under the skin of the embryos, aligned with the rostrum surface, before rotating into lateral position and then attaching through a pedicel to the rostrum cartilage. As well, saw-teeth are replaced and added to as space becomes available. By contrast, saw-teeth in Pristidae insert into sockets in the rostrum cartilage, growing continuously and are not replaced. Despite superficial similarity to oral tooth developmental organization, saw-tooth spatial initiation arrangement is associated with rostrum growth. Replacement is space-dependent and more comparable to that of dermal skin denticles. We suggest these saw-teeth represent modified dermal denticles and lack the ‘many-for-one’ replacement characteristic of elasmobranch oral dentitions

    Constitutive changes in pigment concentrations: implications for estimating isoprene emissions using the photochemical reflectance index

    Get PDF
    The photochemical reflectance index (PRI), through its relationship with light use efficiency (LUE) and xanthophyll cycle activity, has recently been shown to hold potential for tracking isoprene emissions from vegetation. However, both PRI and isoprene emissions can also be influenced by changes in carotenoid pigment concentrations. Xanthophyll cycle activity and changes in carotenoid concentrations operate over different timescales but the importance of constitutive changes in pigment concentrations for accurately estimating isoprene emissions using PRI is unknown. To clarify the physiological mechanisms behind the PRI–isoprene relationship, the light environment of potted Salix viminalis (dwarf willow) trees was modified to induce acclimation in photosynthetic rates, phytopigments, isoprene emissions and PRI. Acclimation resulted in differences in pigment concentrations, isoprene emissions and PRI. Constitutive changes in carotenoid concentration were significantly correlated with both isoprene emissions and PRI, suggesting that the relationship between PRI and isoprene emissions is significantly influenced by constitutive pigment changes. Consequently knowledge regarding how isoprene emissions are affected by both longer term changes in total carotenoid concentrations and shorter term dynamic adjustments of LUE is required to facilitate interpretation of PRI for monitoring isoprene emissions

    Stopping Hydrogen Migration in its Tracks: The First Successful Synthesis of Group Ten Scorpionate Complexes Based on Azaindole Scaffolds

    Get PDF
    The first successful synthesis and characterization of group 10 complexes featuring flexible scorpionate ligands based on 7-azaindole heterocycles are reported herein. Addition of 2 equiv of either K­[HB­(azaindolyl)3] or Li­[HB­(Me)­(azaindolyl)2] to [M­(μ-Cl)­(η,1η2-COEOMe)]2 leads to the formation of 2 equiv of the complexes [M­{κ3-N,N,H-HB­(azaindolyl)3}­(η,1η2-COEOMe)] and [M­{κ3-N,N,H-HB­(Me)­(azaindolyl)2}­(η,1η2-COEOMe)] (where M = Pt, Pd; COEOMe = 8-methoxycyclooct-4-en-1-ide), respectively. In these reactions, the borohydride group is directed toward the metal center forming square based pyramidal complexes. In contrast to analogous complexes featuring other flexible scorpionate ligands, no hydrogen migration from boron is observed in the complexes studied. The fortuitous line widths observed in some of the 11B NMR spectra allow for a closer inspection of the B–H···metal unit in scorpionate complexes than has previously been possible
    • …
    corecore