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Abstract  

The first successful synthesis and characterization of group ten complexes featuring flexible 

scorpionate ligands based on 7-azaindole heterocycles are reported herein. Addition of two 

equivalents of either K[HB(azaindolyl)3] or Li[HB(Me)(azaindolyl)2] to [M(μ-Cl)(η1,η2-

COEOMe)]2 leads to the formation of two equivalents of the complexes [M{κ3-N,N,H-

HB(azaindolyl)3}(η1,η2-COEOMe)] and [M{κ3-N,N,H-HB(Me)(azaindolyl)2}(η1,η2-COEOMe)] 

(where M = Pt, Pd; COEOMe = 8-methoxycyclooct-4-en-1-ide), respectively. In these reactions, the 

borohydride group is directed towards the metal center forming square based pyramidal 

complexes. In contrast to analogous complexes featuring other flexible scorpionate ligands, no 

hydrogen migration from boron is observed in the complexes studied. The fortuitous linewidths 
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observed in some of the 11B NMR spectra allow for a closer inspection of the B–H•••metal unit in 

scorpionate complexes than has previously been possible.  

Introduction 

Over many years now, we have developed a number of anionic poly(azaindolyl)borate and 

neutral poly(azaindolyl)borane ligands derived from the parent ligand [Tai]− [HB(7-azaindolyl)3]
–

.1-4 This ligand was originally synthesized by Wang in 20051 and we have subsequently prepared 

several new derivatives as indicated in Chart 1.3,4 A large number of complexes have now been 

established displaying the coordination modes κ2-N,H, κ2-N,(μ-H), κ2-N,N, κ3-N,N,H, κ3-N,N,N, 

κ3-N,B,N and κ4-N,N,B,N.1-4 Notwithstanding these examples however, the coordination chemistry 

of azaindole based scorpionates with group ten metals is currently unknown. Indeed, in their 

original publication introducing the [Tai]− ligand, Wang reported the failure to isolate stable 

complexes with palladium(II) and platinum(II) precursors [in addition to group 11 silver(I) salts]. 

They cited reduction and subsequent decomposition of these metal salts as likely cause.1 At first, 

this would perhaps be surprising given the large number of group ten complexes known bearing 

the closely related Trofimenko type pyrazolyl (nitrogen donor) scorpionates5 and related systems 

featuring  Pt•••H‒B or Pd•••H‒B motifs.6 Based on our previous observations involving the [Tai]− 

ligand and its derivatives, in addition to the reactivity observed with the more “flexible 

scorpionates”,3a,7a we felt that it is almost certain that hydride migration from boron to metal center 

was somehow implicated in these observations (Scheme 1).7,8 We use the term “flexible 

scorpionate ligands” to represent those ligands which contain an additional atom between the 

donor atom and the borohydride unit when compared to the original Trofimenko-type scorpionates 

(Chart 2). The consequences of this larger chelation size facilitates direct reactivity between the 
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metal and boron centers. In the latter compounds, formation of a metal‒boron bond is possible and 

results in the formation of five membered chelates.  

 

Chart 1 – Anionic and neutral boron based ligands containing azaindolyl units. The colored 

nitrogen atoms highlight the potential sites which are available for coordination to metal centers 

(R = phenyl, mesityl, naphthyl, methyl).   

 

Scheme 1 – Hydrogen migration from azaindole based ligands to the metal center ([M] 

represents the metal center and remaining co-ligands; R = azaindolyl, phenyl; the geometries at 

the boron and metal centers are not implied here for reasons of clarity). 

 

There are currently only a handful of examples of a platinum(II) or palladium(II) complex 

featuring a flexible scorpionate ligand where the hydride remains at the boron center (as 

borohydride).8b,9-11 In all other cases, spontaneous migration of hydride from the boron center to 

metal center occurs.12 In the only two platinum examples involving migration,8b,9 the location of 
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the hydride species was found to be reversible between the two centers. In one case, whilst the 

borohydride unit was found to remain in the solid state, the hydride was found to migrate to the 

platinum center (resulting in platinum–boron bond formation) in solution. Attempts by others to 

synthesize platinum complexes containing flexible scorpionate ligands have also led to further 

unwanted reactivity and intractable mixtures.10  

 

Chart 2 – Comparison of azaindolyl based (flexible) and a pyrazolyl based (rigid, Trofimenko-

type) scorpionate ligands. Activation of the B‒H bond in the former ligands results in the 

formation of five-membered chelates. B‒H bond activation is less likely for the pyrazolyl based 

ligands due to limitations of the ring size. For clarity only one heterocycle is shown; scorpionate 

ligands generally consist of two or more heterocycles.   

 

To date, there are no reported group ten complexes containing any of the poly(azaindolyl)borate 

ligands. Herein, we wish to report the first successful synthesis of palladium and platinum 

complexes bearing the poly(azaindolyl)borate ligands. In the complexes we report, the [Tai]– and 

[MeBai]– (Chart 1) ligands are stable against spontaneous hydride migration and are the first 

examples of group ten complexes containing poly(azaindolyl)borate ligands. Additionally, the 

serendipitous features of the 11B NMR spectra of these group ten complexes provide a rare 

opportunity to examine more closely the interaction of the B–H unit with the metal center. 

 



 5 

Results and Discussion 

In accordance with the established literature, our exploratory experiments by adding one 

equivalent of K[Tai] to archetypical d8 metal precursors such as [MCl2(COD)] (M = Pt or Pd) also 

resulted in non-isolatable products and/or rapid decomposition.13 We suggested in previous 

publications that the presence of the second halide might be involved in further unwanted 

reactivity, such as the elimination of HCl.12d In that same report (and a subsequent one) we 

established the 8-methoxycyclooct-4-en-1-ide (COEOMe) unit as a novel hydrogen atom acceptor 

en route to group ten metal-borane complexes.12d,f Indeed, this moiety is one of several hydrogen 

atom acceptor groups which have been employed to target metal‒borane complexes.3b-d,f,h,7a,8a-c,14 

A range of platinum and palladium complexes were prepared by addition of one equivalent of 

Na[Bmp] [Bmp = H2B(2-mercaptopyridyl)2] to one half equivalents of [MCl(η1,η2-COEOMe)]2 

(where M = Pt, Pd), in the presence of a tertiary phosphine ligand.12d,f The enhanced propensity 

for [Bmp]‒ to “sting” relative to other scorpionate ligands,8c meant that rapid hydrogen migration 

occurred and the COEOMe unit was eliminated.  

Based on this strategy, we attempted to prepare group ten complexes containing the 

poly(azaindolyl)borate ligands utilizing the [PtCl(η1,η2-COEOMe)]2 and [PdCl(η1,η2-COEOMe)]2 as 

precursors. This methodology was indeed successful. The complexes, [Pt{κ3-N,N,H-

HB(azaindolyl)3}(η1,η2-COEOMe)] (1) and [Pd{κ3-N,N,H-HB(azaindolyl)3}(η1,η2-COEOMe)] (2) 

were prepared by addition of two equivalents of K[Tai] to solutions of either [PtCl(COEOMe)]2 or 

[PdCl(COEOMe)]2 in DCM, as shown in Scheme 2. The reaction components were added together 

at 0 °C for the first 30 min and subsequently left to stir for a further 30 min at room temperature. 

Following removal of all volatiles, the desired products were extracted into diethyl ether and 

isolated as off-white solids.  
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Scheme 2 – Synthesis of [M{κ3-N,N,H-HB(azaindolyl)3}(η1,η2-COEOMe)], M = Pt (1), Pd (2).   

  

Figure 1 – 11B (left) and 11B{1H} (right) NMR spectra of complexes 1 (top) and 2 (bottom). 

Each increment on the scale represents 1 ppm.  

The two complexes were stable in the solid state. However, solutions of the compounds tended 

to darken slowly over time, generating platinum or palladium black. Nevertheless, complexes 1 

and 2 were fully characterized via spectroscopic and analytical methods (Table 1). Complexation 
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of the [Tai]− ligand to the metal centers was confirmed by 11B NMR spectroscopy (Figure 1). A 

downfield chemical shift was observed from −5.3 ppm for the ligand (in CD3CN) to 1.8 ppm for 

complex 1 and −3.2 ppm for complex 2 (both in CDCl3). A similar change in chemical shift is 

observed when the [Tai]− ligand coordinates to group nine complexes.3a These chemical shifts are 

consistent with a κ3-N,N,H coordination mode within the resulting complexes. Confirmation that 

the hydrogen substituent remained at the boron centers in 1 and 2 was obtained by comparing the 

11B and 11B{1H} NMR spectra; the signals in the former spectra were found to be doublets whilst 

in the 11B{1H} spectra they were singlets. The 11B NMR spectra also provided additional 

information for complex 1 with regards to 2JPtB coupling. It is well-documented that boron NMR 

typically furnishes broad signals due to the fact that it is a quadrupolar nucleus.15 Whilst tetra-

coordinated boron species tend to be sharper, the signals are commonly not sufficiently resolved 

in order to observe coupling constants lower than 100 Hz. In many of the reported compounds 

featuring Pt•••H‒B units, no JPtB constant has been reported.16 In most cases the corresponding 

signals have been described as being broad. A survey of the literature revealed six articles, 

featuring one or more Pt•••H‒B units, where JPtB coupling constants were reported. The recorded 

coupling constants, which may be described as 2JPtB coupling, range between 74 Hz and 270 Hz.17 

As expected, direct Pt‒B bonding results in larger coupling constants up to around 600 Hz which 

are much more clear within the corresponding spectra.17b,c,d As shown in Figure 1, the boron signal 

in the 11B{1H} NMR spectra of complex 1 is fortuitously sharp [half height width (hhw) = 35 Hz]. 

This has allowed for the determination of the 2JPtB constant for this complex, which is 75 Hz as 

platinum satellites. The lower coupling constant value suggests that there is little direct Pt‒B 

interaction within complex 1. The 1JBH coupling constants of 75 Hz for 1 and 82 Hz for 2, obtained 

from their boron coupled spectra, indicate a reduction in the B‒H bond order with respect to the 
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free ligand (1JBH for K[Tai] = 111 Hz). This confirms a κ3-N,N,H coordination mode for the ligand 

in solution. The infrared spectra of powder samples for both 1 and 2 showed characteristic bands 

at 2151 cm-1 and 2158 cm-1 in the region expected for the B‒H units interacting with the transition 

metal centers, confirming the same coordination mode in the solid state samples.4  

Table 1 – Selected NMR and infrared spectroscopic data for complexes 1 – 4. 

Complex 11B{1H} 

(ppm)a 

1JBH 

(Hz)  

2JPtB 

(Hz) 

11B{1H} 

hhwd  

(Hz) 

11B 

hhwd  

(Hz) 

1H{11B}  

BH 

(ppm) 

IR (B-H••M) 

powder film 

(cm-1) 

[Pt{Tai}(COEOMe)] (1) 1.8a 75 75 35 163 4.80 2151 

[Pd{Tai}(COEOMe)] (2) −3.2a 82  80 174 7.21 2158 

[Pt{MeBai}(COEOMe)] (3) −0.3b urc urc 129 186 3.14 1933 

[Pd{MeBai}(COEOMe)] (4) −5.7b 55  102 184 5.48 2187 

a – in CDCl3; 
b – in C6D6; 

c – no coupling was apparent in the 11B NMR signal due to the broad 

nature of the signal (ur = unresolved); d – hhw is the width of the signal at the half position. 

 

The 1H and 13C{1H} NMR spectra of complex 1, were rather broad and unresolved. This is due 

to the fluxional coordination of the [Tai]− ligand to the platinum center where the “free azaindolyl 

arm” of the ligand is exchanging places with the coordinated “azaindolyl arms” slowly on the 

NMR timescale. Similar fluxional behavior was observed for the related complex [Ir{κ3-N,N,H-

HB(azaindolyl)3}(COD)].3a Nevertheless, the spectra for 1 were consistent with the formation of 

[Pt{κ3-N,N,H-HB(azaindolyl)3}(η1,η2-COEOMe)]. In order to confirm this, the corresponding NMR 

spectra were recorded at 0 ◦C. This reduction in temperature was sufficient to stop the fluxional 
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processes involving the [Tai]− ligand. At this temperature, both 1H and 13C{1H} NMR spectra 

were fully consistent with three chemical environments for the azaindolyl units, i.e. one 

coordinated azaindolyl unit trans to a σ-bound carbon of the COEOMe ligand, one coordinated 

azaindolyl unit trans to the π-bound double bond of the COEOMe ligand and one uncoordinated 

azaindolyl unit. The 1H and 13C{1H} NMR spectra for complex 2 were, on the other hand, much 

more resolved and indicated that the “azaindolyl arms” were rapidly exchanging on the NMR 

timescale at room temperature. The 1H NMR spectrum revealed six signals in the aromatic region 

of the spectrum, five corresponding to each of the chemical environments on the azaindolyl rings, 

each signal integrating for three protons, and one additional broad signal corresponding to the BH 

unit (integrating for one proton). The latter signal was further confirmed as the BH unit in the 

corresponding 1H{11B} NMR spectrum. The remaining twelve signals in the standard 1H NMR 

experiment corresponded to the proton environments of the COEOMe ligand consistent with a η1,η2 

coordination mode. This consisted of two coordinated double bond protons (at 5.84 ppm and 4.79 

ppm), one σ-bound Pd-CH functional group at 3.22 ppm, one CH group containing the OMe group 

at 3.70 ppm and the four remaining CH2 units. The 13C{1H}, COSY, HSQC and HMBC NMR 

experiments were also fully consistent with the 1H NMR assignment. Finally, both mass 

spectrometry and elemental analytical data were consistent with the molecular compositions of the 

two products, [Pt{κ3-N,N,H-HB(azaindolyl)3}(η1,η2-COEOMe)] (1) and [Pd{κ3-N,N,H-

HB(azaindolyl)3}(η1,η2-COEOMe)] (2). As indicated above, these samples were not stable when 

left for extended periods of time in solution. We were therefore only able to obtain single crystals 

of complex 1 (vide infra). As outlined below, the resulting crystal structure was fully consistent 

with the above assignments.  
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The fluxional behavior in 1 and 2 occurs via exchange between the non-coordinated and 

coordinated “azaindolyl arms” of the [Tai]− ligand. By preparing complexes containing just two 

azaindolyl groups both arms could coordinate to the metal to make “static” complexes, i.e. non-

fluxional. We recently reported the synthesis of Li[HB(Me)(azaindolyl)2], Li[MeBai]4 and 

therefore employed this ligand in the synthesis of the complexes, [Pt{κ3-N,N,H-

HB(Me)(azaindolyl)2}(η1,η2-COEOMe)] (3) and [Pd{κ3-N,N,H-HB(Me)(azaindolyl)2}(η1,η2-

COEOMe)] (4) (Scheme 3). They were both synthesized via a similar methodology as outlined 

above with the lithium salt of the ligand precursor in high yielding reactions. Once isolated, 

solutions of the samples appeared to be much more stable than their [Tai]− counterparts. Curiously, 

the boron signals for complexes 3 and 4 were a little broader than found for complexes 1 and 2 

(Table 1). The boron signal for the platinum complex 3 was broader than the palladium complex 

4. This is the opposite trend for complexes 1 and 2. The 11B{1H} signal for 3 was the broadest of 

the four complexes (hhw 129 Hz) which meant that the 2JPtB coupling was not apparent in this 

signal. Furthermore, the absence of any fluxional processes involving the κ3-N,N,H coordinated 

[MeBai]− ligand meant that their corresponding 1H and 13C{1H} NMR spectra were more resolved 

and revealed the two different chemical environments of the “azaindolyl arms” of the ligand (see 

supporting information – Figures  S9 and S11). For example, the 1H NMR spectrum of complex 4 

exhibited 10 proton environments for the two chemically inequivalent azaindolyl rings. As is the 

case with the spectra for 1 and 2, the signals corresponding to the double bond and sigma bound 

C(H) unit of the COEOMe ligand on complexes 3 and 4 were very broad in both the 1H and 13C{1H} 

NMR spectra indicating separate fluxional behavior in the coordination of this ligand to the metal 

centers. Complexes 3 and 4 were further characterized by infrared spectroscopy. Powder samples 

gave characteristic bands for the (B-H••M) units at 1933 cm−1 and 2187 cm−1, respectively. In 
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comparison to the other three complexes (Table 1), the band corresponding to the B−H stretch in 

[Pt{MeBai}(COEOMe)] is of particularly low frequency suggesting a stronger interaction of the 

B−H unit with the platinum center in this complex.6 Finally, satisfactory elemental analysis of the 

four complexes confirmed that they were isolated as analytically pure samples.    

 

Scheme 3 – Synthesis of [M{κ3-N,N,H-HB(Me)(azaindolyl)2}(η1,η2-COEOMe)], M = Pt (3), Pd 

(4). 

Structural characterization of 1, 3 and 4.  

Crystal structures were obtained of three of the four complexes in order to explore the structural 

features and interaction of the B–H unit with the metal centers in more detail. Crystals suitable for 

X-ray diffraction of 1, 3 and 4 were all obtained by allowing saturated diethyl ether or hexane 

solutions of the complexes stand under an inert atmosphere overnight or over a few days. The 

crystal structures obtained from the complexes are shown in Figure 2 – 4. Selected bond lengths 

and distances are highlighted in Table 2 for comparison. Crystallographic parameters for these 

complexes are provided in Table S1 in the electronic supporting information. All structures 

confirmed the facial κ3-N,N,H coordination modes of the [Tai]− and [MeBai]− ligands to the metal 

centers and that the COEOMe ligand remains coordinated via a η1,η2-coordination mode. The 

structures reveal five coordinate square based pyramidal geometries around the metal centers with 

some distortion from the idealized 90° angles. In all three cases, the positioning of the B–H unit 

was highly distorted from the idealized axial position due to the constraints of the κ3-N,N,H 
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coordination mode. Furthermore, there are significant differences in the positioning of the B−H 

unit with respect to the metal centers in the three complexes. For example, the BH••M distances 

are 2.2922(3) Å for 1, 1.9452(4) Å for 3 and 2.06032(10) Å for 4. The corresponding B•••M 

distances are 3.118(8) Å, 2.862(10) Å and 2.9492(19) Å, respectively. This indicates that the B−H 

unit in the MeBai complexes resides more closely to the metal centers than the same unit in the Tai 

complex. The two azaindolyl moieties coordinate via the nitrogen atom of the pyridine 

heterocycles. The eight-membered rings formed adopt boat-boat conformations dictated by the 

planarity of the azaindole heterocycles thus pushing the B–H group towards the metal center. 

When the centroid of the double bond of COEOMe ligand is considered as a point of coordination 

of this unit, the cis inter-ligand angles of the square plane range between 84.90(5)° and 97.04(19)° 

across the three complexes. The sum of the four cis-angles about the metal center in each 

complexes 1, 3 and 4 are 359.7(4)°, 360.6(6)° and 360.35(10)°, respectively. This relatively narrow 

range reflects the tendency of the palladium and platinum centers to adopt square planar 

geometries. While these values are extremely close to the idealized 360°, this does not reflect the 

specific positioning of the double bond with the metal centers which is different in all these cases. 

In complex 1, the centroid of the double bond is only 0.002(10) Å away from the plane defined by 

the other three ligands on the square plane [i.e. N(2), N(4) and C(22)]. For complex 3, the double 

bond sits a significant distance below the square plane where the corresponding distance is 

1.288(12) Å. For complex 4, one of the carbons of the double bond occupies the space very close 

to the plane [C(18) is 0.110(3) Å below the plane] and the centroid is a distance of 0.744(2) Å 

away from the plane. This deviation from the plane seems to be related to the degree of interaction 

of the B–H unit with the metal center. For example, in complex 1, where there is little deviation, 

the Pt–B distance is 3.118(8) Å while in the case of complex 3, where the double bond sits well 
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below the plane, the corresponding Pt–B distance is 2.862(10) Å. The boron centers in the three 

complexes show some degree of deviation from an idealized tetrahedral. The sum angles of the 

three non-hydrogen substitutents are 331.6(10)° for 1, 336.7(13)° for 3 and 334.1(3)° for 4. 

 

Figure 2 – Crystal structure of [Pt{κ3-N,N,H-HB(azaindolyl)3}(COEOMe)] (1). Hydrogen atoms, 

with the exception of that on boron, have been omitted for clarity.  
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Figure 3 – Crystal structure of [Pt{κ3-N,N,H-HB(Me)(azaindolyl)2}(COEOMe)] (3). Hydrogen 

atoms, with the exception of that on boron and the BMe group, have been omitted for clarity.  

 

Figure 4 – Crystal structure of [Pd{κ3-N,N,H-HB(Me)(azaindolyl)2}(COEOMe)] (4). Hydrogen 

atoms, with the exception of that on boron and the BMe group, have been omitted for clarity.  

 

Conclusions 

In summary, stable group ten complexes containing [Tai]− and [MeBai]− have been reported 

providing the first examples of group ten to contain these flexible scorpionate ligands. Their 

syntheses have been achieved by utilizing complexes containing the 8-methoxycyclooct-4-en-1-

ide unit. These azaindolyl based ligands do not exhibit the hydride migration reactivity which had 

previously been observed with the [Bmp]− ligand. This contrasting reactivity allows for the 

isolation and inspection of the first group ten complexes to contain the poly(azaindolyl)borate 

scorpionate ligands. The fortuitous linewidths observed in the 11B NMR spectra of complex 1 

allowed a closer examination of the B–H•••metal interactions within these scorpionate complexes.  
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Table 2 – Selected distances and angles for complexes 1, 3, and 4. 

a – involving non-hydrogen substituents only. 

 

Experimental  

General Remarks 

All manipulations were carried out using standard Schlenk techniques. Solvents were supplied 

extra dry from Acros Organics and were stored over 4 Å molecular sieves. The CD3CN and C6D6 

NMR solvents were also stored in Young’s ampules under N2, over 4 Å molecular sieves and were 

Distances (Å )/ Angles (º) Complex 1 Complex 3 Complex 4 

M‒Ntrans to σ bound C 2.182(6) 2.157(7) 2.2124(14) 

M‒Ntrans to π bound C=C   2.089(6) 2.184(7) 2.1788(14) 

M‒Ccoordinated via σ-bond  
 2.058(7) 2.068(8) 2.0422(16) 

  M‒Ccoordinated via π-bond  
 2.131(7) / 

2.110(8) 

2.096(9) / 

2.081(9) 

2.1551(17) / 

2.1389(17) 

M‒(Centroid of C=C) 2.0053(3) 1.9601(4) 2.02985(16) 

η2-C=C 1.381(11) 1.443(15) 1.399(3) 

M---B 3.118(8) 2.862(10) 2.9492(19) 

B-H (restrained) 1.100 1.100 1.100 

M---HB 2.2922(3) 1.9452(4) 2.06032(10) 

B‒Ntrans to σ bound C 1.559(10) 1.545(13) 1.566(2) 

B‒Ntrans to π bound C=C   1.561(10) 1.541(13) 1.560(3) 

B‒Nfree azaindolyl or B‒CMe 1.542(10) 1.606(14) 1.609(3) 

N‒M‒N 93.5(2) 90.9(3) 94.44(5) 

C‒M‒(Centroid of C=C) 85.4(2) 85.1(3) 84.90(5) 

Ccoordinated via σ-bond‒M‒N 90.6(3) 87.6(3) 87.44(6) 

N‒M‒(Centroid of C=C)   90.17(16) 97.04(19) 93.57(4) 

∑ of angles at boron a 331.6(10) 336.7(13) 334.1(3) 

∑ of cis angles at M a 359.7(4) 360.6(6) 360.35(10) 
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degassed through three freeze-thaw cycles prior to use. All reagents were used as purchased from 

commercial sources. The ligands, K[Tai],1 Li(NCMe)2[MeBai]4 and complexes [PtCl(η1,η2-

COEOMe)]2
18 and [PdCl(η1,η2-COEOMe)]2

19
 were synthesised according to standard literature 

procedures. NMR experiments were conducted on a Bruker 400 MHz AscendTM 400 spectrometer. 

All NMR spectra were recorded at approximately 298 K unless otherwise stated.  Proton (1H) and 

carbon (13C) assignments (Figure 5) were supported by HSQC, HMBC and COSY NMR 

experiments. Infrared spectra where recorded on Perkin-Elmer Spectrum Two spectrometer. Mass 

spectra were recorded by the EPSRC NMSF at Swansea University. Elemental analysis was 

performed at London Metropolitan University by their elemental analysis service.  

 

 

 

 

Figure 5 – Numbering scheme used for NMR assignments (R = Me or 7-azaindolyl) 

 

Synthesis of [Pt{κ3-N,N,H-HB(azaindolyl)3}(η1,η2-COEOMe)] (1) 

A Schlenk flask was charged with [PtCl(COEOMe)]2 (0.057 g, 0.077 mmol) and DCM (5 mL) 

under a nitrogen atmosphere. The solution was cooled to 0 °C (ice bath) and K[Tai] (0.065 g, 

0.162 mmol, 2.1 eq.) dissolved in DCM (5 mL) was added to give a pale yellow solution. After 30 

min the reaction mixture was allowed to warm to room temperature and further stirred for 30 min. 

The mixture was filtered via cannula into a Schlenk flask. All volatiles were removed and the 

residue extracted with diethyl ether (2 × 6 mL). The ether was removed in vacuum from the 

combined extracts to give the product as a yellow solid (0.047 g, 0.067 mmol, 44%). 
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1H NMR δ (CH2Cl2, 273 K): 8.61 [1H, br dd, 3JHH = 5.21 Hz, 4JHH = unresolved, aza-CH(6)], 8.16 

[1H, dd, 3JHH = 4.62 Hz, 4JHH = 1.54 Hz, aza-CH(6’)], 7.96 [2H, overlapping m, aza-CH(4) and 

aza-CH(4’)], 7.92 [1H, d, 3JHH = 3.21 Hz, aza-CH(2)], 7.89 [1H, br dd, 3JHH = 7.74 Hz, 4JHH = 

unresolved, aza-CH(4’’)], 7.81 [1H, d, 3JHH = 3.32 Hz, aza-CH(2’’)], 7.79 [1H, br d, 3JHH = 5.42 

Hz, aza-CH(6’’)], 7.65 [1H, d, 3JHH = 3.36 Hz, aza-CH(2’)], 7.04 [2H, overlapping m, aza-CH(5) 

and aza-CH(5’)], 6.89 [1H, dd, 3JHH = 7.72 Hz, 3JHH = 5.44 Hz, aza-CH(5’’)], 6.63 [2H, 2 

overlapping d, 3JHH = 3.72 Hz, aza-CH(3) and aza-CH(3’’)], 6.61 [1H, d, 3JHH = 3.46 Hz, aza-

CH(3’)], 4.33 [1H, t, 3JHH = 8.13 Hz, JPtH = 112.39 Hz, =CH, COEOMe(5)], 3.36 [1H, br m, =CH, 

COEOMe(6)], 3.08 [1H, m, COEOMe(2)], 2.70 [3H, s, OCH3], 2.46 [1H, m, COEOMe(4)], 2.33 [1H, 

br m, COEOMe(1)], 2.24 – 2.09 [2H, overlapping m, COEOMe(7)],  2.01 [1H, m, COEOMe(8)], 1.67 

[1H, m, COEOMe(4)], 1.56 – 1.43 [3H, overlapping m, 2 × COEOMe(3) and COEOMe(8)]. 1H{11B} 

partial NMR (, CD2Cl2): 4.80 [v br s. BH]. 13C{1H} NMR  (CD2Cl2): 152.64 [aza-C(7a’)], 

150.94 [aza-C(7a’’)], 150.62 [aza-C(7a)], 143.50 [aza-C(6)], 142.14 [aza-C(6’)], 139.54 [aza-

C(6’’)], 133.16 [aza-C(2’)], 132.19 [aza-C(2)], 131.87 [aza-C(2’’)], 129.83 [aza-C(4) and aza-

C(4’’)], 127.84 [aza-C(4’)], 124.82 [aza-C(3a)], 124.35 aza-C(3a’’)], 123.37 [aza-C(3a’)], 115.67 

[aza-C(5’’)], 115.50 [aza-C(5) and aza-C(5’)], 102.32 [aza-C(3)], 101.81 [aza-C(3’’)], 101.38 

[aza-C(3’)], 84.12 [COEOMe(2)], 74.93 [=CH, COEOMe(5)], 55.67 [OCH3], 50.57 [=CH, 

COEOMe(6)], 34.60 [COEOMe(8)], 28.95 [COEOMe(4)], 28.59 [COEOMe(3)], 27.64 [COEOMe(7)], 

25.55 [COEOMe(1)]. 11B-NMR δ(CD2Cl2): 1.75 (d, 1JBH = 73.4 Hz, 2JPtB = 74.6 Hz, hhw = 106.6 

Hz, BH); 11B{1H} NMR δ(CD2Cl2): 1.75 (s, 2JPtB = 74.8 Hz, hhw = 36.2 Hz, BH). 11B-NMR 

δ(CDCl3): 1.83 (d, 1JBH = 74.6 Hz, 2JPtB = 74.9 Hz, hhw = 163.2 Hz, BH); 11B{1H} NMR δ(CDCl3): 

1.83 (s, 2JPtB = 75.1 Hz, hhw = 34.9 Hz, BH). MS m/z (ESI+): 698.24 [M]+. IR (powder film): 2151 
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cm-1 (νBH). Elem. Anal.: Calcd for C30H31BN6OPt: C 51.66; H 4.48; N 12.05; Found: C 51.76; H 

4.54; N 11.88. 

Synthesis of [Pd{κ3-N,N,H-HB(azaindolyl)3}(η1,η2-COEOMe)] (2) 

A Schlenk flask was charged with [PdCl(COEOMe)]2 (0.121 g, 0.215 mmol) and DCM (15 mL). 

The flask was placed in an cooled to 0 °C (ice bath) and K[Tai] (0.183 g, 0.455 mmol, 2.1 eq.) 

was added to give a pale yellow solution. Additional DCM (3 mL) was added to wash any 

remaining solid into the solution. After 30 min the reaction mixture was allowed to warm to room 

temperature and further stirred for 30 min. The mixture was filtered via cannula to remove the KCl 

salt formed. All volatiles were removed under reduced pressure and the desired product was 

extracted from the residue with diethyl ether (2 × 8 mL). The ether solvent was then removed 

under reduced pressure to give the product as a yellow solid (0.196 g, 0.322 mmol, 75%). 

1H NMR (δ, CDCl3): 8.22 [3H, br s, aza-CH(6)], 8.02 [3H, d, 3JHH = 3.12 Hz, aza-CH(2)], 7.87 

[3H, dd, 3JHH = 7.70 Hz, 4JHH = unresolved, aza-CH(4)], 6.96 [3H, dd, 3JHH = 7.70 Hz, 3JHH = 5.16 

Hz, aza-CH(5)], 6.45 [3H, d, 3JHH = 3.31 Hz, aza-CH(3)], 5.84 [1H, s, =CH, COEOMe(6)], 4.79 

[1H, s, =CH, COEOMe(5)], 3.70 [1H, s, CH, COEOMe(2)], 3.22 [1H, s, CH, COEOMe(1)], 2.94 [3H, 

s, CH3, OMe], 2.81 [1H, m, CH2, COEOMe(4)], 2.54 [2H, m, CH2, COEOMe(4) and COEOMe(7)], 

2.44 [1H, m, CH2, COEOMe(8)], 2.30 [1H, m, CH2, COEOMe(7)], 1.95 [2H, s, CH2, COEOMe(3)], 

1.68 [1H, m, CH2, COEOMe(8)]. 1H{11B} partial NMR (, CDCl3): 7.21 [s, BH]. 13C{1H} NMR  

(CDCl3): 151.16 [aza-C(7a)], 141.19 [aza-C(6)], 134.01 [aza-C(2)], 128.80 [aza-C(4)], 124.45 

[aza-C(3a)], 114.88 [aza-C(5)], 100.80 [CH=CH, COEOMe(6)], 100.49 [aza-C(3)], 89.30 [=CH, 

COEOMe(5)], 83.33 [CH, COEOMe(2)], 56.45 [OCH3], 46.97 [COEOMe(1)], 35.23 [COEOMe(8)], 

30.04 [COEOMe(3)], 28.60 [COEOMe(4)], 27.63 [COEOMe(7)]. 11B NMR (, CDCl3): -3.2 (d, 1JBH = 

82 Hz, h.h.w. = 173.9 Hz). 11B{1H} NMR (, CDCl3): -3.21 (s, h.h.w. = 80.1 Hz). MS m/z (ESI+): 
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608.18 [M]+. IR (powder film): 2158 cm-1 (νB-H). Elem. Anal.: Calcd for C30H31BN6OPd: C 59.18; 

H 5.13; N 13.80; Found: C 59.01; H 5.32; N 13.70. 

Synthesis of [Pt{κ3-NNH-HB(Me)(azaindolyl)2}(η1,η2-COEOMe)] (3) 

A Schlenk flask was charged with the solid precursor [PtCl(COEOMe)]2 (104.6 mg, 0.141 mmol) 

and the ligand Li(MeCN)2[MeBai] (98.2 mg, 0.280 mmol, 2 equiv.). Dry/degassed DCM (8 mL) 

was added under a nitrogen atmosphere to give a light brown suspension. The mixture was further 

stirred for 2 h and filtered via cannula into a Schlenk flask. The solvent was removed under reduced 

pressure and the residue extracted with hexanes (3 × 5 mL). The combined hexanes phase was 

filtered through a short pad of celite (4 × 2 cm). All volatiles were removed to give the product as 

an off-white solid which was recrystallized from a concentrated diethyl ether solution (60.4 mg, 

0.101 mmol, 71%). 

 1H NMR δ (C6D6): 8.40 [2H, dd, 3JHH = 5.23 Hz, 4JHH = 1.09 Hz, aza-CH(6)], 7.59 [1H, d, 3JHH = 

3.34 Hz, aza-CH(2)], 7.54 [1H, 3JHH = 3.34 Hz, aza-CH(2’)], 7.40 [2H, overlapping m, aza-CH(4) 

and aza-CH(6’)], 7.33 [1H, dd, 3JHH = 7.72 Hz, 4JHH = 1.07 Hz, aza-CH(4’)], 6.49 (1H, dd, 3JHH = 

7.70 Hz, 3JHH = 5.31 Hz, aza-CH(5)], 6.45 [2H, overlapping d,  aza-CH(3) and aza-CH(3’)], 6.33 

[2H, d, 3JHH = 7.70 Hz, 3JHH = 5.33 Hz, aza-CH(5’)], 3.88 [1H, dt, 3JHH = 11.35 Hz, 3JHH = 3.70 

Hz, COEOMe(2)], 3.79 [1H, br t, 3JHH = 8.49 Hz, JPtH = 109.14 Hz, COEOMe(6)], 3.08 [1H, m, =CH, 

COEOMe(5)], 2.98 [3H, s, OCH3], 2.43 [1H, br m, COEOMe(1)], 2.33 [1H, m, COEOMe(7)], 2.16 

[1H, br m, COEOMe(4)], 2.10 – 1.99 [2H, overlapping m, COEOMe(4) and COEOMe(8)], 1.99 – 1.76 

[3H, overlapping m, 2  COEOMe (3) and COEOMe (8)], 1.66 [1H, m, COEOMe (7)], 1.22 [3H, CH3, 

d, 2JBH = 2.52 Hz]. Partial 1H{11B} δ(C6D6): 3.14 [1H, br s, BH]. 13C{1H} NMR δ (C6D6): 152.49 

[aza-C(7a’)], 151.59 [aza-C(7a)], 142.80 [aza-C(6)], 138.35 [aza-C(6’)], 130.98 [aza-C(2)], 

130.83 [aza-C(2’)] 129.41 [aza-C(4)], 129.28 [aza-C(4’)], 125.21 [aza-C(3a)], 124.53 [aza-
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C(3a’)], 115.00 [aza-C(5’)], 114.97 [aza-C(5)], 102.30 [aza-C(3’)], 101.74 [aza-C(3)], 84.89 [s, 

COEOMe(2)], 69.93 [=CH, COEOMe(6)], 55.86 [OCH3], 47.57 [=CH, COEOMe(5)], 35.05 

[COEOMe(8)], 29.63 [COEOMe(3)], 29.21 [COEOMe(7)], 27.74 [COEOMe(4)], 25.81 [COEOMe(1)], 

5.40 [br s, BCH3 observed indirectly from HSQC]. 11B-NMR δ(C6D6): ‒0.28 (br s, hhw = 185.8 

Hz, BH); 11B{1H} NMR δ(C6D6): ‒0.28 (s, hhw = 128.8 Hz). IR (powder film): 1933 cm−1 (BH). 

Elem. Anal.: Calcd for C24H29BN4OPt: C 48.41; H 4.91; N 9.41; Found: C: 48.53; H 4.96; N 9.26. 

Synthesis of [Pd{κ3-N,N,H-HB(Me)(azaindolyl)2}(η1,η2-COEOMe)] (4) 

A Schlenk flask was charged with the solid precursor [PdCl(COEOMe)]2 (80.3 mg, 0.143 mmol) 

and the ligand, Li(MeCN)2[MeBai] (100.5 mg, 0.287 mmol, 2 equiv.). Dry/degassed DCM (5 mL) 

was added under a nitrogen atmosphere to give a yellow solution which became cloudy after 3 

minutes. The mixture was further stirred for 90 min and filtered via cannula into a Schlenk flask. 

All volatiles were removed under reduced pressure to give the product as an off-white solid which 

was recrystallized from a concentrated diethyl ether solution (50.4 mg, 0.099 mmol, 70%). 

1H NMR δ (C6D6): 8.12 [1H, br s, aza-CH(6’)], 7.74 [2H, d, 3JHH = 3.30 Hz, aza-CH(2) and aza-

CH(2’)], 7.64 [1H, br s, aza-CH(6)], 7.45 [1H, br dd, 3JHH = 7.63 Hz, 4JHH = unresolved, aza-

CH(4)], 7.41 [1H, dd, 3JHH = 7.63 Hz, 4JHH = unresolved, aza-CH(4’)], 6.54 [1H, dd, 3JHH = 6.08 

Hz, 3JHH = unresolved, aza-CH(5’)], 6.44 [1H, br dd, 3JHH = 6.12 Hz, 3JHH = unresolved, aza-

CH(5)], 6.35 [2H, d, 3JHH = 3.19 Hz, aza-CH(3) and aza-CH(3’)], 5.48 [1H, v br s, BH], 5.17 [1H, 

br s, =CH, COEOMe],20 4.26 [1H, br s, =CH, COEOMe],20 3.78 [1H, br s, COEOMe(2)], 3.12 [1H, br 

m, COEOMe(1)], 2.80 [3H, s, OCH3], 2.36 [2H, m, COEOMe(7) and COEOMe(8)], 2.15 [1H, m, 

COEOMe(4)], 2.08 [1H, m, COEOMe(7)], 2.02 – 1.86 [3H, overlapping m, COEOMe(4) and 2 × 

COEOMe(3)], 1.78 [1H, m, COEOMe(8)], 1.23 [3H, BCH3, d, 3JBH = 3.88 Hz]. Partial 1H{11B} 

δ(C6D6): 5.48 [1H, br s, BH]. 13C{1H} NMR δ (C6D6): 151.31 [aza-C(7a)], 150.92 [aza-C(7a’)], 
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140.74 [aza-C(6)], 140.08 [aza-C(6’)], 132.09 [aza-C(2)], 132.02 [aza-C(2’)], 129.12 [aza-C(4)],  

129.06 [aza-C(4’)], 125.31 [aza-C(3a)], 125.11 [aza-C(3a’)], 114.54 [aza-C(5’)], 114.38 [aza-

C(5)], 100.80 [aza-C(3’)], 100.65 [aza-C(3)], 83.83 [br s, COEOMe(2)], 56.08 [OCH3], 47.33 

[COEOMe(1)], 35.45 [COEOMe(8)], 30.86 [COEOMe(3)], 28.57 [COEOMe(7)], 27.59 [COEOMe(4)], 

4.53 [br s, BCH3 observed indirectly from HSQC].20 11B-NMR δ(C6D6): ‒5.70 (d, 1JBH = 55.2 Hz, 

hhw = 184.2 Hz, BH); 11B{1H} NMR δ(C6D6): ‒5.70 (s, hhw = 102.3 Hz). IR (powder film): 2187 

cm−1 (BH). Elem. Anal.: Calcd for C24H29BN4OPd: C 56.88; H 5.77; N 11.06 Found: C: 56.95; H 

5.65; N 10.88. 

X-ray Crystallography 

Single-crystal X-ray diffraction studies of complexes 1, 3 and 4 were carried out at the UK 

National Crystallography Service at the University of Southampton.21 Single crystals of each of 

the complexes were obtained by allowing a saturated ether solution stand at room temperature. A 

single crystal from each sample was mounted on a MITIGEN holder in perfluoroether oil on a 

Rigaku FRE+ equipped with HF Varimax confocal mirrors and an AFC12 goniometer and HG 

Saturn 724+ detector. The crystals were kept at T = 100(2) K during data collection. Data were 

collected and processed and empirical absorption corrections were carried out using CrysAlisPro.22 

The structures were solved by Intrinsic Phasing using the ShelXT structure solution program23 and 

refined on Fo
2 by full-matrix least squares refinement with version 2018/3 of ShelXL24 as 

implemented in Olex2.25 All hydrogen atom positions were calculated geometrically and refined 

using the riding model. The structures for complexes 1 and 3 were each refined as a two-

component multi-crystal [1: Rot(UB1,UB2) = 6.5 around -0.25 0.5 -1 (direct axis); 3: 

Rot(UB1,UB2) = 2 around 1 0 0 (direct axis)]. Crystal Data for 1. C30H31BN6OPt, Mr = 697.51, 

triclinic, P-1 (No. 2), a = 10.3824(3) Å, b = 12.0277(5) Å, c = 12.4516(5) Å,  = 101.051(3)°,  = 
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106.869(3)°,  = 111.203(3)°, V = 1308.35(10) Å3, T = 100(2) K, Z = 2, Z' = 1, (MoK) = 5.399, 

11785 reflections measured, 11785 unique  which were used in all calculations. The final wR2 was 

0.1288 (all data) and R1 was 0.0521 (I > 2(I)). Data for 3. C24H29BN4OPt, Mr = 595.41, monoclinic, 

P21/c (No. 14), a = 8.7220(4) Å, b = 13.9705(6) Å, c = 19.3419(8) Å,  = 101.482(4)°,  =  = 90°, 

V = 2309.66(18) Å3, T = 100(2) K, Z = 4, Z' = 1, (MoK) = 6.098, 12941 reflections measured, 

12941 unique  which were used in all calculations. The final wR2 was 0.1237 (all data) and R1 was 

0.0573 (I > 2(I)). Data for 4. C24H29BN4OPd, Mr = 506.72, monoclinic, P21/c (No. 14), a = 

8.0262(2) Å, b = 19.0533(6) Å, c = 14.7733(5) Å,  = 101.494(3)°,  =  = 90°, V = 

2213.91(12) Å3, T = 100(2) K, Z = 4, Z' = 1, (MoK) = 0.862, 26066 reflections measured, 5083 

unique (Rint = 0.0312) which were used in all calculations. The final wR2 was 0.0539 (all data) and 

R1 was 0.0218 (I > 2(I)). A summary of the crystallographic data collection parameters and 

refinement details for all complexes are presented in the supporting information. Anisotropic 

parameters, bond lengths and (torsion) angles for these structures are available from the CIF files 

which have been deposited with the Cambridge Crystallographic Data Centre and given the 

following deposition numbers, 1864609 (1), 1864611 (3) and 1864610 (4). These data can be 

obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

ASSOCIATED CONTENT 

The following files are available free of charge. 

Crystallographic parameters for all crystal structures in addition to selected spectroscopic data 

are provided in the Electronic Supporting Information.   

 

 

http://www.ccdc.cam.ac.uk/data_request/cif
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Graphical Abstract   

 

The synthesis of the first group ten complexes containing azaindolyl based scorpionates is reported 

herein. Fortuitous linewidths of the boron NMR signals have allowed a closer inspection of the 

B−H•••M interactions.  

 

  

  

 

 

 


