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Abstract 13 

The photochemical reflectance index (PRI), through its relationship with light use efficiency (LUE) 14 

and xanthophyll cycle activity, has recently been shown to hold potential for tracking isoprene 15 

emissions from vegetation. However, both PRI and isoprene emissions can also be influenced by 16 

changes in carotenoid pigment concentrations. Xanthophyll cycle activity and changes in carotenoid 17 

concentrations operate over different timescales but the importance of constitutive changes in pigment 18 

concentrations for accurately estimating isoprene emissions using PRI is unknown. To clarify the 19 

physiological mechanisms behind the PRI-isoprene relationship, the light environment of potted Salix 20 

viminalis (dwarf willow) trees was modified to induce acclimation in photosynthetic rates, 21 

phytopigments, isoprene emissions and PRI. Acclimation resulted in differences in pigment 22 

concentrations, isoprene emissions and PRI. Constitutive changes in carotenoid concentration were 23 

significantly correlated with both isoprene emissions and PRI, suggesting that the relationship 24 

between PRI and isoprene emissions is significantly influenced by constitutive pigment changes. 25 

Consequently knowledge regarding how isoprene emissions are affected by both longer term changes 26 

in total carotenoid concentrations and shorter term dynamic adjustments of LUE is required to 27 

facilitate interpretation of PRI for monitoring isoprene emissions. 28 

Abbreviations 29 
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A, antheraxanthin; βC, β-carotene; BVOC biogenic volatile organic compounds; Car, carotenoids; 30 

EPS, epoxidation state; L, lutein; LUE, light use efficiency; N, neoxanthin; PRI, photochemical 31 

reflectance index; V, violaxanthin; Z,  zeaxanthin. 32 

33 

Introduction 34 

Biogenic volatile organic compounds (BVOCs) are a chemically reactive carbon flux and thus play an 35 

important role in global atmospheric chemistry. BVOCs affect the distribution and residence time of 36 

short-lived radiatively active trace gases such as tropospheric ozone (O3) and methane (CH4; Fiore et 37 

al., 2012). Land-based vegetation returns about 1 PgC of total BVOC emissions to the atmosphere 38 

each year (Guenther et al., 2012). The reasons why plants invest in BVOC emissions remains unclear, 39 

although ecological and physiological roles of emissions are thought to include the ability to attract 40 

pollinators and decrease pathogen attacks and herbivory (Gershenzon, 1994; Michelozzi, 1999; 41 

Niinemets et al., 2013); to increase leaf thermotolerance (Singsaas et al., 1997); and to protect the 42 

plant against oxidative stress (Vickers et al., 2009). 43 

Isoprene is the most dominant BVOC emitted by plants, representing almost half of the total annual 44 

flux of reactive carbon (Guenther et al., 2012).  Whilst it is generally accepted that anthropogenic and 45 

natural perturbations to isoprene emissions are likely to have an important influence on regional 46 

climates and feedbacks to global climate (Pitman et al., 2012), there is a lack of quantitative 47 

understanding of the mechanisms controlling patterns of emissions over long timescales (weeks to 48 

months; Porcar-Castell et al., 2009) and across regions (Foster et al., 2014), which makes modelling 49 

emissions challenging. Furthermore, many isoprene emission models, both empirical and process-50 

based, base estimations on linkages between isoprene emissions and plant primary productivity 51 

(Arneth et al., 2007; Foster et al., 2014; Guenther et al., 1993), even though it is known that isoprene 52 

and photosynthetic activity can become decoupled under conditions such as high temperatures (Unger 53 

et al., 2013); during drought stress (Monson et al., 2007; Niinemets et al., 2010); under increasing 54 

atmospheric CO2 concentration (Monson et al., 2007; Rosenstiel et al., 2003); and due to the presence 55 

of time lags between the seasonal onset of photosynthesis and isoprene emissions (Monson et al., 56 

1994; Pressley et al., 2005). As a consequence, there is a need to base isoprene estimations on 57 

fundamental links between emissions and the biological processes that affect these emissions. 58 

Emission models such as the Model of Emissions of Gases and Aerosols from Nature (MEGAN; 59 

Guenther et al., 2006), go some way towards achieving this aim, but they are increasingly complex 60 

and uncertainty in their estimations can be high (Guenther et al., 2006). 61 

Recently Peñeulas et al. (2013) suggested a simple approach for estimating isoprenoid (i.e. isoprene 62 

and monoterpene) emissions using remotely sensed data. Unlike many previous attempts at using 63 
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remote sensing to estimate isoprenoid emissions, which focus on the detection of formaldehyde (an 64 

isoprenoid oxidation product) in the atmosphere (Barkley et al., 2008; Foster et al., 2014; Palmer et 65 

al., 2003), Peñuelas et al. (2013) showed that a simple spectral index (the photochemical reflectance 66 

index; Gamon et al. 1992) that is indicative of changes in plant light use efficiency (LUE), when 67 

combined with basal emission factors, was as good a predictor for isoprenoid emissions as some 68 

standard emission models (Peñuelas et al., 2013). Furthermore, the high temporal resolution and 69 

spatially extensive nature of remotely sensed data can help capture some spatial and temporal 70 

variability in emissions that other models may miss (Peñuelas et al., 2013). 71 

The use of LUE as an indicator of isoprene emissions is based on the idea that when LUE is low (e.g. 72 

under conditions of high irradiance), photosynthesis is reduced and thus more reducing power 73 

(NADPH) is available for isoprene production (Morfopoulos et al., 2013). Previous studies have also 74 

shown strong links between LUE and the photochemical reflectance index (PRI) due to changes in the 75 

levels of photoprotective xanthophyll cycle pigments in response to excess irradiance, which can be 76 

detected through changes in leaf reflectance (Gamon et al., 1992; Peñuelas et al., 1995). In the short 77 

term (seconds to hours), conversions of xanthophyll cycle pigments between their epoxidised and de-78 

epoxidised states (e.g. conversion of violaxanthin to zeaxanthin via antheraxanthin; Demmig-Adams 79 

and Adams, 1992) results in rapid, and typically temporary, facultative PRI changes that scale with 80 

LUE (Gamon et al., 1992; Peñuelas et al., 1995).  Whilst at these time scales, PRI and LUE are 81 

closely correlated at the leaf-scale, at longer time scales (weeks to months) correlations between LUE 82 

and PRI are often variable as other factors besides xanthophyll pigment conversion may be driving the 83 

PRI signal (Filella et al., 2009; Gamon et al., 1997; Porcar-Castell et al., 2012; Wong and Gamon, 84 

2014). Similarly, at longer time scales, isoprene emissions are also thought to be influenced by 85 

environmental factors other than temperature and light (Geron et al., 2000; Harley et al., 1996; 86 

Pressley et al., 2005). In a series of unrelated studies, at longer time scales changes in the carotenoid 87 

concentration has been shown to influence both PRI, through reflectance changes caused by changes 88 

in the chlorophyll to carotenoid pigment ratio (Gamon and Berry, 2012; Wong and Gamon, 2014), 89 

and isoprene emissions, thought to be caused by either substrate availability or complementary 90 

functionality (Owen and Peñuelas, 2013). 91 

92 

The correlations between PRI and isoprene emissions observed by Peñuelas et al. (2013), which are 93 

based on LUE (through relationships between xanthophyll pigment conversions and LUE), are thus 94 

likely to be influenced by facultative changes in xanthophyll cycle pigments. The extent to which 95 

constitutive pigment concentrations also influence the PRI-isoprene emission relationship has not 96 

been explicitly studied, but may be important for seasonal monitoring of emissions, and under 97 

conditions where changes in LUE and pigment concentrations vary asynchronously. The main aim of 98 

this study is thus to investigate the effect of constitutive changes in pigment pools on the PRI – 99 
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isoprene emission relationship. In doing so we assess some of the physiological mechanisms behind 100 

the relationship, primarily through understanding the influences of constitutive differences in pigment 101 

concentrations, and facultative differences in xanthophyll pigment conversions, on both isoprene 102 

emissions and the PRI reflectance signal. 103 

104 

Materials and methods 105 

The relationships between PRI, isoprene emissions, photosynthetic rates and phytopigments were 106 

investigated in the tree species Salix viminalis (Dwarf Willow).  Willows were chosen as they are 107 

known to be strong emitters of isoprene (Kesselmeier and Staudt, 1999) and are also widely 108 

recognised as suitable bioenergy crops (Karp and Shield, 2008; Keoleian and Volk, 2005; Larsson, 109 

1998). Consequently, Willows play a potentially important role in the future global rate of isoprene 110 

emissions (Lathiere et al., 2010). 111 

112 

Plant material and sampling strategy 113 

The experiment was performed at the Centre for Ecology & Hydrology (CEH) Edinburgh, UK, during 114 

the end of July 2014 when natural daylight extends from ~ 05:15 to 21:15. Potted S. viminalis plants 115 

(approximately 1-2 years old) were obtained from a commercial nursery 116 

(http://www.treesbypost.co.uk) at the beginning of June 2014. The saplings were potted into compost 117 

in 6.5 litre pots. To widen the range of isoprene emissions and pigment concentrations tested, each of 118 

the twenty four plants were subsequently transferred to one of three natural light environments in the 119 

grounds of CEH, Edinburgh. Eight plants were kept against a south-facing wall, which received full 120 

sun (SUN), eight were kept against a south-east facing wall, which was shaded for half of the day 121 

(HALFSHADE) and eight were kept in a naturally full shaded location, with the addition of a double 122 

layer tent of horticultural netting to produce deep shade (SHADE). During the eight week period, 123 

generally sunny conditions prevailed and 30% of the continuous 30-minute PAR measurements were 124 

greater than 500 µmol m-2 s-1. All plants were kept well-watered until the measurements commenced 125 

approximately 8 weeks later. 126 

Sampling was undertaken over the course of a three day period i.e. one sampling day for plants 127 

exposed to each of the three different light environments. Leaves of equivalent size and maturity were 128 

selected for each plant. Prior to sampling, each plant in a given treatment was transferred to a dark 129 

room and covered with a black shade cloth for ~ 40 minutes to ensure that leaves were in a dark-130 

adapted state prior to reflectance sampling.  PRI from dark-adapted leaves has previously been shown 131 

to relate to constitutive changes in pigment concentrations and thus by using PRI values obtained 132 
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from dark-adapted leaves we minimise confusion of the PRI interpretation caused by facultative 133 

changes in xanthophyll pigment pools, which occur as a consequence of diurnal acclimatisation 134 

(Gamon and Berry 2012; Porcar-Castell et al., 2012). 135 

Measurements for each plant leaf were undertaken in the following order: 1) spectral reflectance, 2) 136 

isoprene emission measurements and 3) pigment analyses. All sampling was undertaken between the 137 

hours of 09:00 – 17:30. 138 

139 

Spectral reflectance measurements 140 

Leaf reflectance was measured using a spectroradiometer (FieldSpec Jr; ASD, Boulder, CO, USA) 141 

equipped with a fibre optic, a leaf clip and contact probe (ASD), which enabled all reflectance 142 

measurements to be collected under fixed geometric and illumination conditions. The contact probe 143 

probe’s light source is a halogen–krypton bulb with peak irradiance at a wavelength of ~ 966 nm. The 144 

spot size was 10 mm, and the sampling interval and spectral resolution of the instrument was 1.4 nm 145 

and 3 nm; respectively. The integration time was 68 ms and to avoid any light acclimatisation during 146 

measurements, spectra were averaged over 5 measurements only. To calculate reflectance, each leaf 147 

spectra was divided by a white reference measurement obtained from a calibrated Spectralon® 148 

(Spectralon, LabSphere, North Sutton, NH, USA) reference panel immediately prior to each set of 149 

leaf measurements. The Photochemical Reflectance Index (PRI) was calculated as follows: 150 

��� = ����� −		����/����� + ���� 

Where  � is reflectance and the subscript indicates the wavelength (nm; Gamon et al., 1992; Peñuelas 151 

et al., 1995). 152 

153 

Isoprene emission sampling and analysis 154 

Isoprene emission measurements were made using an ADC LCpro leaf cuvette. The flow rate through 155 

the cuvette was 200 umol s-1 (~300 ml min-1). The temperature inside the cuvette was set to 25 °C and 156 

the PAR was 1000 umol m-2 s-1. On each occasion, the sampled leaf was installed in the cuvette and 157 

equilibrated for 20-30 minutes to allow dynamic equilibrium of photosynthesis and isoprene emission 158 

rates within the cuvette (Geron et al., 2006). A sample of the air exiting the cuvette was drawn 159 

through a stainless steel tube containing Tenax and Carbotrap to trap emitted volatile organic 160 

compounds (VOCs), using an SKC mass flow controlled pocket pump at 200 ml min -1. 161 
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At the end of the sampling, the leaf area inside the cuvette was marked and leaf samples of 4 mm 162 

diameter were extracted and frozen in liquid nitrogen for pigment analysis using high performance 163 

liquid chromatography (HPLC; see section Pigment analyses). The outline of the leaf was 164 

subsequently traced onto paper, cut out, and the leaf area determined by weighing the paper template 165 

after calibration of the paper. Due to the simple structure of the leaves, there was < 5 % uncertainty 166 

associated with this method of determining leaf area. 167 

Isoprene emission samples were desorbed using a Perkin Elmer automatic thermodesorption device 168 

(Turbomatrix™ ATD), into a gas chromatograph-mass spectrometer (Perkin Elmer GC-MS) with 169 

Helium as carrier gas. Compounds were desorbed at 280 ˚C for 6 minutes onto a Tenax-TA cold trap, 170 

which was maintained at -30 ˚C. The trap was then flash-heated to 280 ˚C for 5 minutes secondary 171 

desorption onto the GC column. The GC column was held at 35 ˚C for 2 minutes, then heated to 160 172 

˚C at 4 ˚C min-1, followed by a final heating to 300 ˚C at 45 ˚C min-1. The temperature was held at 300 173 

˚C for 10 minutes.  Isoprene quantification was achieved by injecting and analysing 30 ml of 0.7 ppm 174 

gaseous isoprene standard (Air Products) onto adsorbent tubes and analysed in the same way as the 175 

samples. Quality assurance standards were analysed at the start of the batch, and then for every 5 176 

samples. 177 

178 

Pigment analyses 179 

Phytopigments in the frozen (-80 °C) leaf discs from the sampled willow leaves were extracted into 180 

acetone (buffered with CaCO3), after grinding under liquid nitrogen in a mortar and pestle. Extracts 181 

were centrifuged (5000 rpm for 5 minutes) and the supernatant filtered through a 0.2 micron PTFE 182 

syringe filter. Prior to HPLC analysis, extracts were diluted 3:7 with the aqueous component (70 % 183 

MeOH plus 30% 28 mM Tetra butyl ammonium acetate TBAA) of the HPLC mobile phase to achieve 184 

a good chromatographic peak shape. A variable aliquot (20-200 µl) was injected into the HPLC 185 

(Agilent 1100), using a reverse phase chromatographic Agilent Zorbax Eclipse XDB 8 (3.0 x 150 186 

mm, 3.5 µm particle size @ 60 °C). 187 

Absorbance was measured at: 440 nm, 450 nm, 470 nm, 480 nm and 665 nm depending on the 188 

pigment. The complete spectrum of photosynthetic pigments in the 370-750 nm ranged was carried 189 

out to confirm identification 190 

External standards (DHI Lab products, Høersholm, Denmark), duplicates and blanks were used for 191 

Identification and quantification. The linear gradient of solvent elution for quantification is shown in 192 

Table 1. 193 

194 
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Xanthophyll cycle pigment pools (VAZ) were calculated as the sum of violaxanthin (V), 195 

antheraxanthin (A) and zeaxanthin (Z) concentrations. Total carotenoid concentration (Car) was 196 

calculated as the sum of neoxanthin (N), V, A, Z, lutein (L) and β-carotene (βC). Total chlorophyll 197 

(Chl) was calculated as the sum of Chlorophyll a and b concentrations. Pigments were expressed 198 

individually on an area basis (µmol m-2) and carotenoids were also normalised to total chlorophyll 199 

concentration (mmol mol-1). The epoxidation state of the xanthophyll cycle, which is an expression of 200 

the non-photoprotective pigment composition of the xanthophyll cycle, was calculated as: 201 

��� =
� + 0.5�

� + � + �

202 

Statistical analyses 203 

Differences between the three light environment groups were analysed using one-way ANOVA with 204 

Tukey's honestly significant difference (HSD) post-hoc test. We calculated the Pearson’s correlation 205 

coefficient (r) to evaluate relationships between variables. All statistical analyses were undertaken in 206 

the R statistical software package (R Development Core Team 2012). 207 

208 

Results 209 

Isoprene emission potentials, phytopigments and PRI of leaves acclimatised to sun, shade and half-210 

shade 211 

Leaves acclimatised to different illumination conditions showed significant differences in their 212 

pigment pools, isoprene emissions, photosynthetic rates and recorded PRI values (Table 2). 213 

214 

SUN leaves exhibited higher concentrations of total carotenoids (F(2,21) = 33.11, P < 0.001), and 215 

xanthophyll cycle pigments (F(2,21) = 118, P < 0.001) per area than SHADE leaves. Chlorophyll 216 

concentration per area was highly variable within leaves of a given treatment (data not shown) and 217 

thus observed differences were only significant between leaves in the HALFSHADE and SUN 218 

treatments (F(2,21) = 7.908, P < 0.01), where chlorophyll levels were highest in the leaves exposed to 219 

full sun. The Chl a/b ratio was significantly higher in SUN leaves than those grown in shaded 220 

conditions (F(2,21) = 95.84, P < 0.001). In addition, per leaf area, SUN leaves also possessed 221 

significantly greater pools of both β-carotene (F(2,21) =21.61, P < 0.001), and lutein (F(2,21) =13.03, P 222 

< 0.001) than SHADE leaves, whereas leaves in both SUN and SHADE treatments exhibited similar 223 

concentrations of neoxanthin. These findings were largely mirrored when pigments were expressed on 224 
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a chlorophyll basis (Table 2). The most notable differences between the leaves in the SUN and 225 

SHADE treatments were the greater levels of β-carotene, and particularly the greater concentration of 226 

xanthophyll cycle pigments, in the SUN leaves. Consequently, the increase in the sum of all 227 

carotenoids in leaves from the SUN treatment primarily reflected increases in these two pigment 228 

pools. 229 

Isoprene emissions (F(2,21) = 12.29, P < 0.001) and photosynthetic assimilation rates (F(2,21) = 23.05, P 230 

< 0.001) were highest in leaves from the SUN treatment, compared to those acclimatised to the 231 

SHADE or HALFSHADE treatments (Table 2), whereas PRI of  SUN leaves was significantly lower 232 

than for leaves in either of the other two treatments (F(2,21) = 34.17, P < 0.001). Lowest values of EPS 233 

were observed in SHADE leaves (F(2,21) = 4.07, P < 0.05). 234 

235 

Relationships between isoprene emissions, phytopigments and PRI 236 

Isoprene emissions were significantly positively related to carotenoid and chlorophyll pigments per 237 

leaf area, in response to differences in the light acclimatisation treatments (Table 3; Fig. 1). Total 238 

carotenoid concentration (Fig. 1a), β-carotene and lutein were the carotenoids most strongly 239 

correlated with isoprene emissions (r = 0.8; P < 0.0001). Isoprene emissions were also well 240 

correlated with xanthophyll cycle pigment concentration (r = 0.75, P < 0.0001; Fig. 1b) but not with 241 

the epoxidation state of these pigments (EPS; Table 3). When carotenoid concentrations were 242 

expressed on a chlorophyll basis, as opposed to per leaf area, the relationship with isoprene emissions 243 

was significantly weaker (Table 3). Isoprene emissions were only moderately correlated with the 244 

photosynthetic assimilation rate (r = 0.60 P < 0.01; Fig. 1c). 245 

PRI was most strongly correlated with the size of the xanthophyll cycle pigment pool (r = -0.82, P < 246 

0.0001; Fig. 2a) and was also strongly correlated with carotenoid concentration (Fig. 2b). The strength 247 

of the correlations was similar regardless of whether carotenoids or the xanthophyll pigment 248 

concentration was expressed per leaf area or on a chlorophyll basis (Table 3). PRI was also 249 

moderately well correlated with isoprene emissions (r = -0.66; Fig. 2c) even though PRI and isoprene 250 

emissions were found to correlate best with different biochemical variables (Table 3). EPS was not 251 

significantly correlated with PRI (r = -0.1, P > 0.05; Table 3). 252 

253 

Discussion 254 

 Effect of sun, shade and half-shade acclimation on leaf chemistry, physiology, isoprene emissions 255 

and spectral reflectance 256 
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Phytopigments, isoprene emissions, photosynthetic assimilation rates and recorded PRI values of 257 

willow leaves acclimatised to different illumination conditions are similar to those observed in other 258 

studies and across a range of species. 259 

The higher Chl a/b ratio for leaves acclimatised to a higher growth irradiance reported in the current 260 

study, agree with those reported previously (e.g. Dale and Causton, 1992; Niinemets, 2007) and 261 

suggests that leaves acclimatised to shady conditions have greater levels of Chl b, and a larger antenna 262 

size than sun-exposed leaves, both of which help shaded leaves gather more light (Hallik et al., 2012). 263 

When plants experience a large range of light availabilities, there should also be a strong relationship 264 

between leaf area-based total carotenoid concentrations and growth irradiance or leaf mass area 265 

(LMA; Hallik et al., 2012). The results from our study indicate that the effect of light regime on total 266 

carotenoid concentration was significant, with larger total carotenoid pools observed in plants adapted 267 

to full sunlight. These findings are similar to a number of other studies that have reported higher 268 

carotenoid concentrations in plants transferred from shade to sun conditions, than in plants remaining 269 

shaded (Porcar-Castell et al., 2009). Differences in carotenoid concentrations have also been reported 270 

along vertical light gradients within natural canopies. For example, Gamon and Berry (2012) observed 271 

larger carotenoid concentrations (relative to chlorophyll) in leaves of three conifer species (Tsuga 272 

heterophylla, Pinus ponderosa and Pinus banksiana), which were exposed to full sun at the top of the 273 

canopy, than those located further down in the shade.  Similarly, Hallik et al. (2012) also reported an 274 

increase in carotenoid concentration along an increasing vertical light availability gradient in natural 275 

canopies of two herbaceous species (Inula salicina, Centaurea jacea) and two woody species 276 

(Populus tremula, Tilia cordata). 277 

Acclimation to low light tends to enhance the pools of light-harvesting carotenoids (lutein and its 278 

precursor α-carotene; Hallik et al., 2012), which improves light harvesting in deep shade (Krause et 279 

al., 2001; Matsubara et al., 2009). Our results show no difference in lutein concentration in S. 280 

viminalis leaves based on leaf dry mass between shade and sun treatments (data not shown) and 281 

slightly higher (9%) lutein concentration (on a chlorophyll basis) in sun-adapted plants. Demmig-282 

Adams (1998) also observed a small (5%) increase in lutein (on a chlorophyll basis) in some sun-283 

exposed leaves compared to shaded leaves. Leaf acclimation to high light tends to increase the pool of 284 

carotenoids associated with the efficiency of photosystem I (PSI) and II (PSII), and photoprotection 285 

(i.e. β-carotene, its derivatives and the xanthophyll pigments, Z, A and V; Hallik et al., 2012). In our 286 

study, β-carotene concentrations in S. viminalis leaves, were indeed highest in sun-adapted plants (leaf 287 

area and chlorophyll basis). Light-dependent conversion between V, A and Z plays a central role in 288 

photoprotection, dissipating excess light energy as heat (Demmig-Adams and Adams, 2006; Muller et 289 

al., 2001). Our results show a significantly greater VAZ concentration in S. viminalis leaves grown in 290 
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full sun conditions compared to shade-adapted leaves (leaf area and chlorophyll basis). Our findings 291 

are consistent with other studies, which suggest that sun-exposed leaves invest more in 292 

photoprotection relative to those growing in the shade (e.g. Demmig-Adams, 1998; Filella et al., 293 

2009; Gamon and Berry, 2012; Porcar-Castell et al., 2009). As expected, there was a significant effect 294 

of shading on isoprene emissions from S. viminalis. The higher isoprene emissions observed for plants 295 

in full sun compared to those growing in the shade agrees with several other published results (e.g. 296 

Harley et al., 1996; Sharkey et al., 1996). Differences in isoprene emissions between sun and shaded 297 

leaves can, in part, be attributed to differences in the biochemical and/or physiological properties that 298 

influence emission potential. For example due to differences in the proportion of photosynthate 299 

allocated to isoprene emissions (Litvak et al., 1996). 300 

PRI values were lower in leaves that were acclimated to full sunlight than those leaves that were 301 

subject to either of the shaded treatments (Table 2). PRI was also strongly correlated with total 302 

carotenoids and specifically the size of the xanthophyll cycle pigment pool, but not with EPS. These 303 

findings are consistent with previous reports that leaf-level PRI, over seasonal timescales, is strongly 304 

influenced by constitutive changes in photoprotective pigment concentrations (Gamon and Berry, 305 

2012; Porcar-Castell et al., 2012; Stylinski et al., 2002; Wong and Gamon, 2014). 306 

Relationships between leaf chemistry, physiology, isoprene emissions and spectral reflectance 307 

Our results show a significant positive correlation between isoprene emissions and photosynthesis 308 

(Table 3). Similar, correlations between isoprene emissions and photosynthetic light response, has 309 

been reported in a range of species (e.g. Kuhn et al., 2004a; Kuhn et al., 2004b; Litvak et al., 1996), 310 

suggesting a close relationship between isoprene biosynthesis and carbon (Litvak et al., 1996; Sharkey 311 

and Singsaas, 1995). However, our results also show that photosynthesis explains only ~36 % of the 312 

variability in isoprene emissions (Fig. 1). Differences in leaf temperature and variations in CO2 313 

concentration in the leaf cuvette air may contribute to some of the variability.  It is possible that some 314 

of the observed variability in isoprene emissions may be due to different leaf densities, and perhaps to 315 

emission samples being taken at different times of the day with a possible underlying circadian effect 316 

on the emissions (Litvak et al., 1996; Loivamaki et al., 2007; Wilkinson et al., 2006), though this has 317 

not been demonstrated for Salix species. Furthermore, 10-30 % of isoprene production is not directly 318 

linked to photosynthesis, but is associated with older carbon sources (Unger et al., 2013). The 319 

relationship between photosynthesis and isoprene emissions may also break down under a range of 320 

different environmental conditions (see Introduction). Consequently, isoprene emissions are not 321 

expected to correlate strongly with photosynthesis rate in all situations and conditions (Sanadze, 322 

2004). 323 
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As anticipated, dark adaptation of the leaves prior to commencement of the experiment resulted in a 324 

non-significant correlation between EPS and isoprene emissions, indicating that short-term facultative 325 

changes in the xanthophyll cycle pigment pool (i.e. pigment conversions) were not related to isoprene 326 

emissions in our study. 327 

Our results show that isoprene emissions from S. viminalis at standard conditions were significantly 328 

correlated with total carotenoid concentration, as well as β-carotene, lutein and total xanthophyll 329 

pigment concentration. The correlations between carotenoid concentration and isoprene emissions 330 

observed in our study could be due to biochemical or functional (anti-oxidant) relationships, or a 331 

combination of both. This supports the “Opportunistic hypothesis” (Owen and Peñuelas, 2005) and 332 

also concurs with previous studies that report relationships between volatile isoprenoid emission 333 

potential and carotenoid pools for light-dependent monoterpene and isoprene emissions from a range 334 

of different species (Owen and Peñuelas, 2005; Porcar-Castell et al., 2009). 335 

PRI values were significantly correlated with isoprene emissions (Table 3), which agrees with the 336 

results reported by Peñuelas et al. (2013). However, the strength of the correlation reported in our 337 

study is slightly lower than those reported by Peñuelas et al. (2013) for Populas nigra, which may in 338 

part be due to the narrower range of isoprene emissions produced by S. vimarlix, which was 339 

approximately half of that observed by Peñuelas et al. (2013). 340 

The lack of correlation between PRI and EPS indicates that under the conditions of this experiment, 341 

short term facultative adjustments in the epoxidation state of the xanthophyll cycle pigments did not 342 

influence PRI. Since isoprene emissions were also strongly correlated with total carotenoid 343 

concentrations, and to a slightly lesser extent the size of the xanthophyll cycle pigment pool, but not 344 

with EPS; our results strongly support the hypothesis that at longer time scales (weeks to months), the 345 

relationship between isoprene emissions and the PRI signal is influenced by constitutive adjustments 346 

in carotenoid concentration. 347 

Our results complement those of Peñuelas et al. (2013) who suggested that isoprene-PRI relationships 348 

under naturally varying illumination conditions were a function of changes in LUE, and thus at least 349 

in part, thought to be associated with short-term facultative xanthophyll cycle pigment conversions in 350 

response to irradiance. However, we also show that at longer timescales the isoprene-PRI relationship 351 

is also likely to be driven by constitutive adjustments in the size of carotenoid pigment pools. 352 
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If PRI is to be used as an estimator of isoprenoid emissions or incorporated into isoprenoid emission 353 

models, then knowledge of how isoprene emissions are influenced by both the longer term effects of 354 

growth irradiance on carotenoid pigment concentrations observed in our study, and the dynamic 355 

adjustments of xanthophyll cycle pigments suggested by Peñuelas et al. (2013), have important 356 

implications for interpreting the PRI-isoprene relationship. This may be especially true where 357 

facultative and constitutive changes in pigments are out of phase (Gamon and Berry, 2012; Sims et 358 

al., 2006; Wong and Gamon, 2014). Consequently, further work is needed to isolate and understand 359 

the relative influence of short term facultative and longer term constitutive changes in carotenoid 360 

pigment pools on the relationship between isoprenoid emissions and PRI, across a wider range of 361 

species and in field conditions. 362 
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Figure Legends 534 

Fig. 1 Correlations between isoprene emissions and a) total carotenoids, b) xanthophyll cycle pigment 535 

pool (VAZ) and c) photosynthetic assimilation rates. Lines are fitted for reasons of clarity only. ns = 536 

not significant; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 537 

538 

Fig. 2 Correlations between the photochemical reflectance index (PRI) and a) xanthophyll cycle 539 

pigment pool (VAZ), b) total carotenoids and c) isoprene emissions. Lines are fitted for reasons of 540 

clarity only. ns = not significant; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 541 
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Table 1 Analytical gradient protocol for elution of pigments using HPLC 

Time (mins) % Solvent A % Solvent B 

0 95 5 

22 30 70 

35 95 5 

36 0 100 

42.5 0 100 

43 95 5 

50 95 5 

Solvent A - 70% MeOH plus 30% 28mM Tetra butyl ammonium acetate TBAA; solvent B - methanol 
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Table 2 Differences in pigment composition, isoprene emissions, photosynthetic assimilation rates, 

epoxidation state of the xanthophyll cycle pigments, and the photochemical reflectance index from 

pooled data for SHADE, HALFSHADE and SUN treatment leaves. 

SHADE HALFSHADE SUN 
SUN, % of 

SHADE 

Mean SD Mean SD Mean SD 

Chl a/b ratio 3.5 a 0.1 3.6 b 0.1 4.0 c 0.1 16.0 % 

Pigment concentration on a leaf area 

basis 

Chl (µmol m-2)  1171.4 ab 157.8 1038.4 a 113.5 1363.3 b  220.9 - 

Car (µmol m-2)  274.9 a 36.8 264.5 a 24.8 409.0 b 52.2 48.8 % 

VAZ (µmol m-2) 45.1 a 5.9 51.8 a 4.5 112.8 b 14.7 150.1 % 

β- Carotene (µmol m-2)  71.8 a 11.8 64.6 a 7.5 100.5 b 14.7 39.9 %  

Lutein (µmol m-2)  116.9 a 14.6 110.9 a 10.2 147.8 b 19.7 26.4 % 

Neoxanthin (µmol m-2)  41.1 ab 5.8 37.1 b 4.7 47.8 a 7.7 - 

Pigment concentration on a chlorophyll 

basis 

Car Chl-1 (mmol mol-1) 234.9 a 9.1 255.4 b 14.8 301.9 c 20.4 28.5 % 

VAZ  Chl-1 (mmol mol-1) 38.6 a 3.2 50.2 b 4.4 83.7 c 10.8 116.6 % 

β-Carotene Chl-1 (mmol mol-1) 61.2 a 3.7 62.3 a 4.3 73.9 b  2.8 20.9 % 

Lutein Chl-1 (mmol mol-1) 100.0 a 4.2 107.1 b 6.7 109.0 b 5.6 9.0 % 

Neoxanthin Chl-1 (mmol mol-1) 35.1 a 2.1 35.8 a 2.8 35.3 a 4.0 - 

Isoprene emission potential  

(nmol m–2 s–1 ) 
2.7 a 2.6 0.8 a 1.0 7.3 b 3.6 172.6 % 

Photosynthetic assimilation rate  

(µmol m-2 s-1) 7.7 a 1.4  9.8 b 0.9 12.2 c 1.5 
58.0 % 

PRI 0.05 a 0.01 0.05 a 0.00 0.03 b 0.01 -45.0 % 

EPS 0.61 a 0.07 0.77 b 0.16 0.75 ab 0.13 - 

The Tukey test compared differences between treatments at the 5% level of significance (P < 0.05). Same letters 

indicate mean values are not significantly different in the horizontal direction. Percentage differences (SUN, % 

of SHADE) are not calculated when there is no statistically significant difference between SHADE and SUN 

treatments. Abbreviations: Chl, sum of Chl a + b; Car, sum of all carotenoids; VAZ, sum of violaxanthin (V) + 

antheraxanthin (A) + zeaxanthin (Z); PRI, photochemical reflectance index; EPS: epoxidation state of 

xanthophyll cycle pigments. 
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Table 3 Correlation matrix showing the Pearson’s correlation coefficient (r) between variables. 

PRI EPS Isoprene A Chl Car VAZ βC L N Car Chl-1 VAZ  Chl-1 

PRI 1 

EPS -0.10 1 

Isoprene  -0.66***  0.11 1 

A -0.50* 0.33  0.60** 1 

Chl -0.47* 0.02  0.83**** 0.52** 1 

Car -0.75**** 0.23  0.84**** 0.71*** 0.86**** 1 

VAZ  -0.82**** 0.28  0.75**** 0.77**** 0.67*** 0.94**** 1 

βC  -0.70**** 0.16  0.89**** 0.66*** 0.98**** 0.98**** 0.86**** 1 

L -0.64*** 0.16  0.81**** 0.63* 0.97**** 0.97**** 0.85**** 0.97**** 1 

N -0.46* 0.29  0.73*** 0.36 0.84**** 0.83**** 0.65*** 0.87**** 0.84**** 1 

Car Chl-1  -0.77**** 0.42* 0.45* 0.62** 0.20 0.67*** 0.83**** 0.53** 0.51* 0.35 1 

VAZ Chl-1 -0.80**** 0.36 0.53** 0.72*** 0.32 0.74**** 0.91**** 0.60** 0.59** 0.38 0.97**** 1 

Abbreviations: PRI, photochemical reflectance index; EPS, epoxidation state of the xanthophyll cycle pigments; Isoprene, isoprene emissions ((nmol m–2 s–1 ); A, photosynthetic assimilation 

rate (µmol m-2 s-1) ; Chl, sum of chl a + b (µmol m-2); Car, sum off all carotenoids (µmol m-2); VAZ, sum of violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z) (µmol m-2); βC, β-carotene 

(µmol m-2); L, lutein (µmol m-2)  ; N, neoxanthin (µmol m-2); Car Chl-1 , total carotenoids expressed on a chlorophyll basis (mmol mol-1); VAZ  Chl-1, sum of violaxanthin (V) + antheraxanthin (A) 

+ zeaxanthin (Z) expressed on a chlorophyll basis (mmol mol-1); Significance levels: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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Fig. 1 Correlations between isoprene emissions and a) total carotenoids, b) xanthophyll cycle pigment pool 
(VAZ) and c) photosynthetic assimilation rates. Lines are fitted for reasons of clarity only. ns = not 

significant; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.  

250x312mm (300 x 300 DPI)  
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Fig. 2 Correlations between the photochemical reflectance index (PRI) and a) xanthophyll cycle pigment pool 
(VAZ), b) total carotenoids and c) isoprene emissions. Lines are fitted for reasons of clarity only. ns = not 

significant; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.  

250x312mm (300 x 300 DPI)  
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