74 research outputs found
Symmetric Sensorimotor Somatotopy
BACKGROUND: Functional imaging has recently been used to investigate detailed somatosensory organization in human cortex. Such studies frequently assume that human cortical areas are only identifiable insofar as they resemble those measured invasively in monkeys. This is true despite the electrophysiological basis of the latter recordings, which are typically extracellular recordings of action potentials from a restricted sample of cells. METHODOLOGY/PRINCIPAL FINDINGS: Using high-resolution functional magnetic resonance imaging in human subjects, we found a widely distributed cortical response in both primary somatosensory and motor cortex upon pneumatic stimulation of the hairless surface of the thumb, index and ring fingers. Though not organized in a discrete somatotopic fashion, the population activity in response to thumb and index finger stimulation indicated a disproportionate response to fingertip stimulation, and one that was modulated by stimulation direction. Furthermore, the activation was structured with a line of symmetry through the central sulcus reflecting inputs both to primary somatosensory cortex and, precentrally, to primary motor cortex. CONCLUSIONS/SIGNIFICANCE: In considering functional activation that is not somatotopically or anatomically restricted as in monkey electrophysiology studies, our methodology reveals finger-related activation that is not organized in a simple somatotopic manner but is nevertheless as structured as it is widespread. Our findings suggest a striking functional mirroring in cortical areas conventionally ascribed either an input or an output somatotopic function
Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin
Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements
International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements
Evidence for sparse synergies in grasping actions
Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) – sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) – sparsity in synergy representation – i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) – a novel view combining both SC and SE – i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks
Somatotopic map and inter- and intra-digit distance in Brodmann area 2 by pressure stimulation
The somatotopic representation of the tactile stimulation on the finger in the brain is an essential part of understanding the human somatosensory system as well as rehabilitation and other clinical therapies. Many studies have used vibrotactile stimulations and reported finger somatotopic representations in the Brodmann area 3 (BA 3). On the contrary, few studies investigated finger somatotopic representation using pressure stimulations. Therefore, the present study aimed to find a comprehensive somatotopic representation (somatotopic map and inter- and intra-digit distance) within BA 2 of humans that could describe tactile stimulations on different joints across the fingers by applying pressure stimulation to three joints-the first (p1), second (p2), and third (p3) joints-of four fingers (index, middle, ring, and little finger). Significant differences were observed in the inter-digit distance between the first joints (p1) of the index and little fingers, and between the third joints (p3) of the index and little fingers. In addition, a significant difference was observed in the intra-digit distance between p1 and p3 of the little finger. This study suggests that a somatotopic map and inter- and intra-digit distance could be found in BA 2 in response to pressure stimulation on finger joints.ope
Distinct Haptic Cues Do Not Reduce Interference when Learning to Reach in Multiple Force Fields
Background: Previous studies of learning to adapt reaching movements in the presence of novel forces show that learning multiple force fields is prone to interference. Recently it has been suggested that force field learning may reflect learning to manipulate a novel object. Within this theoretical framework, interference in force field learning may be the result of static tactile or haptic cues associated with grasp, which fail to indicate changing dynamic conditions. The idea that different haptic cues (e.g. those associated with different grasped objects) signal motor requirements and promote the learning and retention of multiple motor skills has previously been unexplored in the context of force field learning. Methodology/Principle Findings: The present study tested the possibility that interference can be reduced when two different force fields are associated with differently shaped objects grasped in the hand. Human subjects were instructed to guide a cursor to targets while grasping a robotic manipulandum, which applied two opposing velocity-dependent curl fields to the hand. For one group of subjects the manipulandum was fitted with two different handles, one for each force field. No attenuation in interference was observed in these subjects relative to controls who used the same handle for both force fields. Conclusions/Significance: These results suggest that in the context of the present learning paradigm, haptic cues on their own are not sufficient to reduce interference and promote learning multiple force fields
The Cosmological Constant
This is a review of the physics and cosmology of the cosmological constant.
Focusing on recent developments, I present a pedagogical overview of cosmology
in the presence of a cosmological constant, observational constraints on its
magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity
(http://www.livingreviews.org/), December 199
Hand use predicts the structure of representations in sensorimotor cortex.
Fine finger movements are controlled by the population activity of neurons in the hand area of primary motor cortex. Experiments using microstimulation and single-neuron electrophysiology suggest that this area represents coordinated multi-joint, rather than single-finger movements. However, the principle by which these representations are organized remains unclear. We analyzed activity patterns during individuated finger movements using functional magnetic resonance imaging (fMRI). Although the spatial layout of finger-specific activity patterns was variable across participants, the relative similarity between any pair of activity patterns was well preserved. This invariant organization was better explained by the correlation structure of everyday hand movements than by correlated muscle activity. This also generalized to an experiment using complex multi-finger movements. Finally, the organizational structure correlated with patterns of involuntary co-contracted finger movements for high-force presses. Together, our results suggest that hand use shapes the relative arrangement of finger-specific activity patterns in sensory-motor cortex
Challenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin
Muscle coordination studies repeatedly show low-dimensionality of muscle activations for a wide variety of motor tasks. The basis vectors of this low-dimensional subspace, termed muscle synergies, are hypothesized to reflect neurally-established functional muscle groupings that simplify body control. However, the muscle synergy hypothesis has been notoriously difficult to prove or falsify. We use cadaveric experiments and computational models to perform a crucial thought experiment and develop an alternative explanation of how muscle synergies could be observed without the nervous system having controlled muscles in groups. We first show that the biomechanics of the limb constrains musculotendon length changes to a low-dimensional subspace across all possible movement directions. We then show that a modest assumption—that each muscle is independently instructed to resist length change—leads to the result that electromyographic (EMG) synergies will arise without the need to conclude that they are a product of neural coupling among muscles. Finally, we show that there are dimensionality-reducing constraints in the isometric production of force in a variety of directions, but that these constraints are more easily controlled for, suggesting new experimental directions. These counter-examples to current thinking clearly show how experimenters could adequately control for the constraints described here when designing experiments to test for muscle synergies—but, to the best of our knowledge, this has not yet been done
A method for detergent-free isolation of membrane proteins in their local lipid environment.
Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins
- …