14 research outputs found

    Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support

    Get PDF
    In pursuing personalized medicine, pharmacogenomic (PGx) knowledge may help guide prescribing drugs based on a person’s genotype. Here we evaluate the feasibility of incorporating PGx knowledge, combined with clinical data, to support clinical decision-making by: 1) analyzing clinically relevant knowledge contained in PGx knowledge resources; 2) evaluating the feasibility of a rule-based framework to support formal representation of clinically relevant knowledge contained in PGx knowledge resources; and, 3) evaluating the ability of an electronic medical record/electronic health record (EMR/EHR) to provide computable forms of clinical data needed for PGx clinical decision support. Findings suggest that the PharmGKB is a good source for PGx knowledge to supplement information contained in FDA approved drug labels. Furthermore, we found that with supporting knowledge (e.g. IF age <18 THEN patient is a child), sufficient clinical data exists in University of Washington’s EMR systems to support 50% of PGx knowledge contained in drug labels that could be expressed as rules

    A research agenda to support the development and implementation of genomics-based clinical informatics tools and resources.

    Get PDF
    OBJECTIVE: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled Developing a Clinical Genomic Informatics Research Agenda . The meeting\u27s goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings. MATERIALS AND METHODS: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting\u27s goals. Invitees were also asked to complete a survey to assess important considerations needed to develop a genomic-based clinical informatics research strategy. RESULTS: Outcomes from the meeting included identifying short-term research needs, such as designing and implementing standards-based interfaces between laboratory information systems and electronic health records, as well as long-term projects, such as identifying and addressing barriers related to the establishment and implementation of genomic data exchange systems that, in turn, the research community could help address. DISCUSSION: Discussions centered on identifying gaps and barriers that impede the use of GCIT in genomic medicine. Emergent themes from the meeting included developing an implementation science framework, defining a value proposition for all stakeholders, fostering engagement with patients and partners to develop applications under patient control, promoting the use of relevant clinical workflows in research, and lowering related barriers to regulatory processes. Another key theme was recognizing pervasive biases in data and information systems, algorithms, access, value, and knowledge repositories and identifying ways to resolve them

    CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record

    Get PDF
    Objective Clinicians’ ability to use and interpret genetic information depends upon how those data are displayed in electronic health records (EHRs). There is a critical need to develop systems to effectively display genetic information in EHRs and augment clinical decision support (CDS)

    Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space

    Get PDF
    The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types

    Physician Attitudes toward Adopting Genome-Guided Prescribing through Clinical Decision Support

    No full text
    This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS), prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx). We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII). The survey also includes items to measure physicians’ characteristics (awareness, experience, and perceived usefulness), attitudes about personal genome testing (PGT) services, and comfort using technology. We surveyed 101 General Internal Medicine physicians from the Icahn School of Medicine at Mount Sinai (ISMMS). The majority were residency program trainees (~88%). Prior to enlisting into CLIPMERGE PGx, most physicians were aware of and had used decision support aids. Few physicians, however, were aware of and had used genome-guided prescribing. The majority of physicians viewed decision support aids and genotype data as being useful for making prescribing decisions. Most physicians had not heard of, but were willing to use, PGT services and felt comfortable interpreting PGT results. Most physicians were comfortable with technology. Physicians who perceived genotype data to be useful in making prescribing decisions, had more positive attitudes toward adopting genome-guided prescribing through CDS. Our findings suggest that internal medicine physicians have a deficit in their familiarity and comfort interpreting and using genomic information. This has reinforced the importance of gathering feedback and guidance from our enrolled physicians when designing genome-guided CDS and the importance of prioritizing genomic medicine education at our institutions

    Factors associated with resistance to SARS-CoV-2 infection discovered using large-scale medical record data and machine learning.

    No full text
    There have been over 621 million cases of COVID-19 worldwide with over 6.5 million deaths. Despite the high secondary attack rate of COVID-19 in shared households, some exposed individuals do not contract the virus. In addition, little is known about whether the occurrence of COVID-19 resistance differs among people by health characteristics as stored in the electronic health records (EHR). In this retrospective analysis, we develop a statistical model to predict COVID-19 resistance in 8,536 individuals with prior COVID-19 exposure using demographics, diagnostic codes, outpatient medication orders, and count of Elixhauser comorbidities in EHR data from the COVID-19 Precision Medicine Platform Registry. Cluster analyses identified 5 patterns of diagnostic codes that distinguished resistant from non-resistant patients in our study population. In addition, our models showed modest performance in predicting COVID-19 resistance (best performing model AUROC = 0.61). Monte Carlo simulations conducted indicated that the AUROC results are statistically significant (p < 0.001) for the testing set. We hope to validate the features found to be associated with resistance/non-resistance through more advanced association studies

    CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record

    No full text
    Objective Clinicians’ ability to use and interpret genetic information depends upon how those data are displayed in electronic health records (EHRs). There is a critical need to develop systems to effectively display genetic information in EHRs and augment clinical decision support (CDS). Materials and Methods The National Institutes of Health (NIH)-sponsored Clinical Sequencing Exploratory Research and Electronic Medical Records & Genomics EHR Working Groups conducted a multiphase, iterative process involving working group discussions and 2 surveys in order to determine how genetic and genomic information are currently displayed in EHRs, envision optimal uses for different types of genetic or genomic information, and prioritize areas for EHR improvement. Results There is substantial heterogeneity in how genetic information enters and is documented in EHR systems. Most institutions indicated that genetic information was displayed in multiple locations in their EHRs. Among surveyed institutions, genetic information enters the EHR through multiple laboratory sources and through clinician notes. For laboratory-based data, the source laboratory was the main determinant of the location of genetic information in the EHR. The highest priority recommendation was to address the need to implement CDS mechanisms and content for decision support for medically actionable genetic information. Conclusion Heterogeneity of genetic information flow and importance of source laboratory, rather than clinical content, as a determinant of information representation are major barriers to using genetic information optimally in patient care. Greater effort to develop interoperable systems to receive and consistently display genetic and/or genomic information and alert clinicians to genomic-dependent improvements to clinical care is recommended
    corecore