44 research outputs found

    Analysis of defects on BN nano-structures using high-resolution electron microscopy and density-functional calculations

    Get PDF
    Cataloged from PDF version of article.Cubic boron nitride (c-BN) nucleation takes place on hexagonal boron nitride (h-BN) layers growing perpendicular to the substrate surface during thin film synthesis. Studies focused on the nucleation of the cubic phase suggest the possibility that transient phases and/or defects on these h-BN structures have a role in sp3-bonded cubic phase nucleation. In this study, we have investigated the nature, energetics, and structure of several possible defects on BN basal planes, including point defects, 4-, and 5-fold BN rings, that may possibly match the experimentally observed transient phase fine structure. TEM image observations are used to build approximate atomic models for the proposed structures, and DFT calculations are used to relax these structures while minimizing their respective total energies. These optimized atomic geometries are then used to simulate TEM images, which are compared to the experimentally observed structures. Data from DFT calculations and analysis of simulated images from the proposed atomic structures suggest that 4-fold BN rings are more likely to exist on the transient phase possibly leading to c-BN nucleation. © 2008 Elsevier B.V. All rights reserved.Cubic boron nitride (c-BN) nucleation takes place on hexagonal boron nitride (h-BN) layers growing perpendicular to the substrate surface during thin film synthesis. Studies focused on the nucleation of the cubic phase suggest the possibility that transient phases and/or defects on these h-BN structures have a role in sp3-bonded cubic phase nucleation. In this study, we have investigated the nature, energetics, and structure of several possible defects on BN basal planes, including point defects, 4-, and 5-fold BN rings, that may possibly match the experimentally observed transient phase fine structure. TEM image observations are used to build approximate atomic models for the proposed structures, and DFT calculations are used to relax these structures while minimizing their respective total energies. These optimized atomic geometries are then used to simulate TEM images, which are compared to the experimentally observed structures. Data from DFT calculations and analysis of simulated images from the proposed atomic structures suggest that 4-fold BN rings are more likely to exist on the transient phase possibly leading to c-BN nucleation

    Effect of pathologic fractures on survival in multiple myeloma patients: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple Myeloma (MM) is a B cell neoplasm characterized by the clonal proliferation of plasma cells. Skeletal complications are found in up to 80% of myeloma patients at presentation and are major cause of morbidity.</p> <p>Methods</p> <p>49 patients were enrolled with MM admitted to Black Sea Technical University Hospital between 2002–2005. Pathologic fractures (PFs) were determined and the patients with or without PF were followed up minumum 3 years for survival analysis.</p> <p>Results</p> <p>PF was observed in 24 patients (49%) and not observed in 25 patients (51%). The risk of death was increased in the patients with PF compared with patients who had no fractures. While overall survival was 17.6 months in the patients with PFs, it was 57.3 months in the patients with no PFs.</p> <p>Conclusion</p> <p>These findings suggest that PFs may induce reduced survival and increased mortality in the MM patients, however, larger sample size is essential to draw clearer conclusions added to these data.</p

    microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An in Vitro Model

    Get PDF
    microRNAs (miRs) are proposed as critical molecular targets in SARS-CoV-2 infection. Our recent in silico studies identified seven SARS-CoV-2 specific miR-like sequences, which are highly conserved with humans, including miR-1307-3p, with critical roles in COVID-19. In this current study, Vero cells were infected with SARS-CoV-2, and miR expression profiles were thereafter confirmed by qRT-PCR. miR-1307-3p was the most highly expressed miR in the infected cells; we, therefore, transiently inhibited its expression in both infected and uninfected cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay assessed cell viability following SARS-CoV-2 infection, identifying that miR-1307 expression is inversely correlated with cell viability. Lastly, changes in miR-1307-dependent pathways were analyzed through a detailed miRNOME and associated in silico analysis. In addition to our previously identified miRs, including miR-1307-3p, the upregulation of miR-193a-5p, miR-5100, and miR-23a-5p and downregulation of miR-130b-5p, miR34a-5p, miR-505-3p, miR181a-2-3p, miR-1271-5p, miR-598-3p, miR-34c-3p, and miR-129-5p were also established in Vero cells related to general lung disease-related genes following SARS-CoV-2 infection. Targeted anti-miR-1307-3p treatment rescued cell viability in infection when compared to SARS CoV-2 mediated cell cytotoxicity only. We furthermore identified by in silico analysis that miR-1307-3p is conserved in all SARS-CoV-2 sequences/strains, except in the BA.2 variant, possibly contributing to the lower disease severity of this variant, which warrants further investigation. Small RNA seq analysis was next used to evaluate alterations in the miRNOME, following miR-1307-3p manipulation, identifying critical pathobiological pathways linked to SARS-CoV-2 infection-mediated upregulation of this miR. On the basis of our findings, miRNAs like miR-1307-3p play a critical role in SARS-CoV-2 infection, including via effects on disease progression and severity

    Theoretical and spectroscopic investigations on the structure and bonding in B-C-N thin films

    Get PDF
    Cataloged from PDF version of article.In this study, we have synthesized boron, carbon, and nitrogen containing films using RF sputter deposition. We investigated the effects of deposition parameters on the chemical environment of boron, carbon, and nitrogen atoms inside the films. Techniques used for this purpose were grazing incidence reflectance-Fourier-transform infrared spectroscopy (GIR-FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). GIR-FTIR experiments on the B-C-N films deposited indicated presence of multiple features in the 600 to 1700 cm(-1) range for the infrared (IR) spectra. Analysis of the IR spectra, XPS and the corresponding EELS data from the films has been done in a collective manner. The results from this study suggested even under nitrogen rich synthesis conditions carbon atoms in the B-C-N films prefer to be surrounded by other carbon atoms rather than boron and/or nitrogen. Furthermore, we have observed a similar behavior in the chemistry of B-C-N films deposited with increasing substrate bias conditions. In order to better understand these results, we have compared and evaluated the relative stability of various nearest-neighbor and structural configurations of carbon atoms in a single BN sheet using DFT calculations. These calculations also indicated that structures and configurations that increase the relative amount of C-C bonding with respect to B-C and/or C-N were energetically favorable than otherwise. As a conclusion, carbon tends to phase-segregate in to carbon clusters rather than displaying a homogeneous distribution for the films deposited in this study under the deposition conditions studied. (C) 2009 Elsevier B.V. All rights reserved

    An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors

    Get PDF
    Cataloged from PDF version of article.Multi-walled carbon nanotubes (MWCNTs) were synthesized through pyrolysis of the sulfuric acid-carbonized byproduct of sucrose. While the presence of sulfur in the reaction media has a key role in the formation and population density of MWCNTs, we have not observed the formation of Y-junctions or encountered other novel carbon nanotube formations. Results indicate the presence of sulfur in catalyst particles trapped inside nanotubes, but failed to find sulfur in the side-walls of the CNTs. In order to verify and explain these findings, we analyzed the behavior of sulfur and its possible effects on the side-wall structure of CNTs by using density functional theory-based calculations on various atomic models depicting sulfur inclusion in the side-walls. The results of the computational study were in line with the experimental results and also provided a new perspective by suggesting that the defects such as pentagons may act as nucleation sites for the Y-branches. The results indicated that sulfur prefers to adsorb on these defective regions, but it is not responsible for the formation of these structures or defects. (C) 2010 Elsevier Ltd. All rights reserved

    Pleural effusion: A rare complication of hepatitis A

    No full text
    Hepatitis A (HAV) infection, which is the most common form of hepatitis in the paediatric age group and which sometimes has a fulminant course, is endemic in Turkey, constituting one of the country′s important health problems. Pleural effusion also represents a rare benign complication of acute HAV infections. We describe here a case of Hepatitis A who developed pleural effusion

    Effect of ecological surface treatment method on friction strength properties of nettle (urtica dioica) fibre yarns

    Get PDF
    Over the last few decades, more attention is given to lignocellulose based fibres as reinforcement material in the polymer composites owing to the environmental pollution caused by the extensive usage of synthetic and inorganic fibres. Developing new natural fibre reinforced composites is the focus of many researches nowadays. They are made from renewable resources and they have less environmental effect in comparison to inorganic fibre reinforced composites. The interest of consumers in eco-friendly natural fibres and textiles has increased in recent years. Unlike inorganic fibres, natural fibres present light weight, high strength/density ratio and are readily available, environmentally friendly and biodegradable. Many different types of natural fibres are exploited for the production of biodegradable polymer composites. The nettle (Urtica dioica L.) is a well-known plant growing on rural sites of Europe, Asia, and North America. Nettle plant contains fibre similar to hemp and flax. However, similar to other natural fibres, nettle fibres are poorly compatible with the thermoplastic matrix of composites, due to their hydrophilic character which reduces mechanical properties of nettle fibre reinforced thermoplastics. In order to improve the fibrematrix adhesion of the natural fibre reinforced composites, surface treatment processes are applied to the lignocellulose fibres. In this study nettle (urtica dioica) fibre yarns were treated with NaOH by using conventional, ultrasonic and microwave energy methods. After treatment processes tensile strength, elongation, friction strength and SEM observations of the nettle fibre yarns were investigated. All treatment processes were improved the tensile strength, elongation and friction strength properties of the nettle fibre yarns. Also higher tensile strength, elongation and friction strength properties were obtained from treated nettle fibre yarns which treated by using microwave energy method. © Published under licence by IOP Publishing Ltd

    An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis

    No full text
    Thin films of TiO2 and boron-nitrogen (B/N) co-doped TiO 2 on glass substrates have been prepared by a simple sol-gel dip coating route. Titanium (IV) isopropoxide, boric acid and urea have been used as titanium, boron and nitrogen sources, respectively. The films were characterized by X-ray diffraction, X-ray photo-electron spectroscopy, scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy. The TiO 2 thin films with co-doping of different B/N atomic ratios (0.27-20.89) showed better photo-catalytic degradation ability of methylene blue compared to that of bare-TiO2 under visible light. The TiO 2 film doped with the highest atomic concentration of N showed repeatedly the best photo-catalytic performance. The high activity of co-doped TiO2 thin films toward organic degradation can be related to the stronger absorption observed in the UV-vis region, red shift in adsorption edges and surface acidity induced by B/N doping. Furthermore, several atomic models for B/N doping have been used to investigate the effect of doping on electronic structure and density of states of TiO2 through ab-initio density functional theory calculations. The computational study suggested a significant narrowing of the band gap due to the formation of midgap states and the shift of Fermi-level for the interstitial N model supporting the experimental results. © 2013 Elsevier B.V
    corecore