11,168 research outputs found

    Perturbative analysis of generally nonlocal spatial optical solitons

    Get PDF
    In analogy to a perturbed harmonic oscillator, we calculate the fundamental and some other higher order soliton solutions of the nonlocal nonlinear Schroedinger equation (NNLSE) in the second approximation in the generally nonlocal case. Comparing with numerical simulations we show that soliton solutions in the 2nd approximation can describe the generally nonlocal soliton states of the NNLSE more exactly than that in the zeroth approximation. We show that for the nonlocal case of an exponential-decay type nonlocal response the Gaussian-function-like soliton solutions can't describe the nonlocal soliton states exactly even in the strongly nonlocal case. The properties of such nonlocal solitons are investigated. In the strongly nonlocal limit, the soliton's power and phase constant are both in inverse proportion to the 4th power of its beam width for the nonlocal case of a Gaussian function type nonlocal response, and are both in inverse proportion to the 3th power of its beam width for the nonlocal case of an exponential-decay type nonlocal response.Comment: 13 pages, 16 figures, accepted by Phys. Rev.

    Resonance tongues and patterns in periodically forced reaction-diffusion systems

    Full text link
    Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky (BZ) reaction in response to a spatially-homogeneous time-periodic perturbation with light. The regions (tongues) in the forcing frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced BZ reaction shows both spatially-uniform oscillations and rotating spiral waves, while the forced system shows patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and frequency of the perturbation, and also on whether the system responds to the forcing near the uniform oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system

    Seed vigor, aging, and osmopriming affect anion and sugar leakage during imbition of maize (Zea mays L.) caryopses

    Get PDF
    Conductivity was significantly increased by aging and decreased by osmopriming of maize (Zea mays L.) caryopses. Chloride, phosphate, and sulfate were the main anions that leaked out of maize seeds; their leakage was closely related to conductivity, increased by aging, and decreased by osmopriming. The anion leakage of isolated embryos correlated closely to seed vigor and was more sensitive to aging and priming than that of the whole seed. Anion leakage may be a more sensitive measure for seed vigor than bulk conductivity readings. Aging did not increase the sugar leakage of whole seeds but significantly increased the sugar leakage of isolated embryos. Sugar leakage was not closely related to total soluble sugar content of seeds. While priming decreased seed conductivity, the decreased anion and sugar leakage of the primed seeds was mainly caused by the washing effect during priming. The total anions or sugars left in the polyethylene glycol (PEG) solution after priming and in the conductivity solution of the primed seeds was almost the same as in the conductivity solution of the unprimed seeds alone

    Dirac Particles in Twisted Tubes

    Get PDF
    We consider the dynamics of a relativistic Dirac particle constrained to move in the interior of a twisted tube by confining boundary conditions, in the approximation that the curvature of the tube is small and slowly varying. In contrast with the nonrelativistic theory, which predicts that a particle's spin does not change as the particle propagates along the tube, we find that the angular momentum eigenstates of a relativistic spin-1/2 particle may behave nontrivially. For example, a particle with its angular momentum initially polarized in the direction of propagation may acquire a nonzero component of angular momentum in the opposite direction on turning through 2 \pi radians. Also, the usual nonrelativistic effective potential acquires an additional factor in the relativistic theory.Comment: 16 pages, 3 EPS figures, REVTeX using BoxedEPS package; email to [email protected]

    Dynamics of Turing patterns under spatio-temporal forcing

    Get PDF
    We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatio-temporal forcing in the form of a travelling wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally-modulated travelling waves and localized travelling soliton-like solutions. The latter make contact with the soliton solutions of P. Coullet Phys. Rev. Lett. {\bf 56}, 724 (1986) and provide a general framework which includes them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive CDIMA reaction are also reported.Comment: 6 pages, 5 figure
    • …
    corecore