94 research outputs found

    Toward an assessment of the global inventory of present-day mercury releases to freshwater environments

    Get PDF
    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg· a−1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget

    Stable isotope food-web analysis and mercury biomagnification in polar bears ( Ursus maritimus )

    Full text link
    Mercury (Hg) biomagnification occurs in many ecosystems, resulting in a greater potential for toxicological effects in higher-level trophic feeders. However, Hg transport pathways through different food-web channels are not well known, particularly in high-latitude systems affected by the atmospheric Hg deposition associated with snow and ice. Here, we report on stable carbon and nitrogen isotope ratios, and Hg concentrations, determined for 26, late 19th and early 20th century, polar bear ( Ursus maritimus ) hair specimens, collected from catalogued museum collections. These data elucidate relationships between the high-latitude marine food-web structure and Hg concentrations in polar bears. The carbon isotope compositions of polar bear hairs suggest that polar bears derive nutrition from coupled food-web channels, based in pelagic and sympagic primary producers, whereas the nitrogen isotope compositions indicate that polar bears occupy > fourth-level trophic positions. Our results show a positive correlation between polar bear hair Hg concentrations and ÎŽ 15 N. Interpretation of the stable isotope data in combination with Hg concentrations tentatively suggests that polar bears participating in predominantly pelagic food webs exhibit higher mercury concentrations than polar bears participating in predominantly sympagic food webs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73930/1/j.1751-8369.2009.00114.x.pd

    Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS

    Get PDF
    This paper reviews the problems encountered in eleven studies of Sr isotope analysis using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) in the period 1995–2006. This technique has been shown to have great potential, but the accuracy and precision are limited by: (1) large instrumental mass discrimination, (2) laser-induced isotopic and elemental fractionations and (3) molecular interferences. The most important isobaric interferences are Kr and Rb, whereas Ca dimer/argides and doubly charged rare earth elements (REE) are limited to sample materials which contain substantial amounts of these elements. With modern laser (193 nm) and MC-ICPMS equipment, minerals with >500 ppm Sr content can be analysed with a precision of better than 100 ppm and a spatial resolution (spot size) of approximately 100 Όm. The LA MC-ICPMS analysis of 87Sr/86Sr of both carbonate material and plagioclase is successful in all reported studies, although the higher 84Sr/86Sr ratios do suggest in some cases an influence of Ca dimer and/or argides. High Rb/Sr (>0.01) materials have been successfully analysed by carefully measuring the 85Rb/87Rb in standard material and by applying the standard-sample bracketing method for accurate Rb corrections. However, published LA-MC-ICPMS data on clinopyroxene, apatite and sphene records differences when compared with 87Sr/86Sr measured by thermal ionisation mass spectrometry (TIMS) and solution MC-ICPMS. This suggests that further studies are required to ensure that the most optimal correction methods are applied for all isobaric interferences

    Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution

    Get PDF
    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean

    Ecological strategy for soil contaminated with mercury

    Get PDF
    Aims The paper presents results from plot experiments aimed at the development of an ecological strategy for soil contaminated with mercury. Meadow grass (Poa pratensis) was tested on mercury contaminated soil in a former chlor-alkali plant (CAP) in southern Poland for its phytoremediation potential. Methods The stabilisation potential of the plants was investigated on plots without additives and after the addition of granular sulphur. Biomass production, uptake and distribution of mercury by plants, as well as leachates and rhizosphere microorganisms were investigated, along with the growth and vitality of plants during one growing season. Results The analysed plants grew easily on mercury contaminated soil, accumulating lower amounts of mercury, especially in the roots, from soil with additive of granular sulphur (0.5 % w/w) and sustained a rich microbial population in the rhizosphere. After amendment application the reduction of Hg evaporation was observed. Conclusions The obtained results demonstrate the potential of using Poa pratensis and sulphur for remediation of mercury contaminated soil and reduction of the Hg evaporation from soil. In the presented study, methods of Hg reduction on “hot spots” were proposed, with a special focus on environmental protection. This approach provides a simple remediation tool for large areas heavily contaminated with mercury

    Studying the humification degree and evolution of peat down a Holocene bog profile (Inuvik, NW Canada): A petrological and chemical perspective

    No full text
    The process of the transformation of fresh organic matter (OM) into more stable and recalcitrant humic substances is still not completely clear. Understanding how OM humification evolves in northern bog environments is extremely important, especially considering that they represent one of the largest terrestrial carbon pools. Structural changes of OM occurring during the humification process have been generally evaluated by indirect measurements of the degree of humification. Several approaches have been used, often providing contrasting results probably because humification is a complex process that evolves differently according to varying pedoclimatic conditions. In the present work, the authors followed the evolution of peat OM along a 165 cm bog profile (covering the mid- to late Holocene) correlating results obtained from both organic petrological and chemical investigation. Data clearly underline a significant agreement between the two perspectives, both showing either a quite immature peat material or the presence of three distinct zones along the profile. In detail, both spectroscopic (i.e., FT-IR and three dimensional fluorescence spectra, humification indexes), and Rock\u2013Eval pyrolysis results (low residual organic carbon content and high hydrogen and oxygen index values) showed the occurrence of a central zone (from 20\u201330 cm to 120 cm depth) often characterized by high heterogeneity and a low degree of humification when compared to the upper 3c20 and bottom 40 cm sections

    Mercury, lead and lead isotope ratios in the teeth of moose (Alces alces) from Isle Royale, U.S. upper midwest, from 1952 to 2002

    No full text
    Assessing the effect of recent reductions in atmospheric pollution on metal concentrations in wildlife in North America has been difficult because of the sparse availability of historical samples with which to establish a pre-regulation baseline, and because many ecosystems may be affected by local point sources which could obscure broader-scale trends. Here we report a recent 50 yr annual record of Hg, Pb and Pb isotope ratios in the teeth of a resident population of moose (Alces alces) in Isle Royale National Park, a relatively remote island in Lake Superior, Michigan, USA. During the early 1980s, concentrations of tooth Hg abruptly declined by ∌65% compared to the previous 30 years (p \u3c 0.001), similar to a previous study of Hg in herring gull eggs in the Great Lakes region. Lead declined at the same time, and by 2002 Pb in adult moose teeth was ∌80% lower than it had been prior to the early 1980s (p \u3c 0.001). These trends were unaffected by normalization against the geogenic elements La and Sr, which indicates that the trends in Hg and Pb had an anthropogenic cause. Temporal patterns of Pb isotope ratios suggested that the primary sources of Pb at different times in the moose were combustion of U.S. coal and leaded gasoline. Reductions in emissions from coal combustion might explain the co-incident reductions of Hg and Pb in Isle Royale moose, with elimination of alkyl Pb additives also playing a role in the continued tooth Pb reductions after 1983. © 2009 The Royal Society of Chemistry
    • 

    corecore