18 research outputs found

    Convection Heat Transfer Analysis in a Channel with an Open Trapezoidal Cavity: Heat Source Locations effect

    Get PDF
    In this work, a numerical study of mixed convection inside a horizontal channel with an open trapezoidal enclosure subjected to a discrete heat source in different locations is carried out. The heat source with the length of ε = 0.75, is maintained at a constant temperature. The air flow with a fixed velocity and a cold temperature enters the channel horizontally. The other walls of the enclosure and the channel are adiabatic. The results are presented in the form of the contours of velocity, isotherms and Nusselt numbers profiles for various heat source locations, Prandtl number (Pr = 0.71) and Reynolds number (Re = 100) respectively. The distribution of the isotherms depends significantly on the position of the heat source. We noted that the best heat transfer is detected where the heat source is placed in the top of the left

    A biodegradable fibrin scaffold for mesenchymal stem cell transplantation.

    No full text
    A potential therapy to enhance healing of bone tissue is to deliver isolated mesenchymal stem cells (MSCs) to the site of a lesion to promote bone formation. A key issue within this technology is the development of an injectable system for the delivery of MSCs. Fibrin gel exploits the final stage of the coagulation cascade in which fibrinogen molecules are cleaved by thrombin, convert into fibrin monomers and assembled into fibrils, eventually forming fibers in a three-dimensional network. This gel could have many advantages as a cell delivery vehicle in terms of biocompatibility, biodegradation and hemostasis. The objective of this study was to explore the possibility of using fibrin gel as a delivery system for human MSCs (HMSCs). To this end we have determined the optimal fibrinogen concentrations and thrombin activity for loading HMSCs in vitro into the resultant fibrin gels to obtain cell proliferation. We found that a concentration of 18 mg/ml of fibrinogen and a thrombin activity of 100 IU/ml was optimal for producing fibrin scaffolds that would allow good HMSCs spreading and proliferation. In these conditions, cells were able to proliferate and expressed alkaline phosphatase, a bone marker, in vitro. When implanted in vivo, HMSCs were able to migrate out of the fibrin gel and invade a calcium carbonate based ceramic scaffold suggesting that fibrin gel could serve as a delivery system for HMSCs

    Convection Heat Transfer Analysis in a Channel with an Open Trapezoidal Cavity: Heat Source Locations effect

    No full text
    In this work, a numerical study of mixed convection inside a horizontal channel with an open trapezoidal enclosure subjected to a discrete heat source in different locations is carried out. The heat source with the length of ε = 0.75, is maintained at a constant temperature. The air flow with a fixed velocity and a cold temperature enters the channel horizontally. The other walls of the enclosure and the channel are adiabatic. The results are presented in the form of the contours of velocity, isotherms and Nusselt numbers profiles for various heat source locations, Prandtl number (Pr = 0.71) and Reynolds number (Re = 100) respectively. The distribution of the isotherms depends significantly on the position of the heat source. We noted that the best heat transfer is detected where the heat source is placed in the top of the left

    Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression

    No full text
    Mesenchymal stromal cells (MSCs) seeded onto biocompatible scaffolds have been proposed for repairing bone defects. When transplanted in vivo, MSCs (expanded in vitro in 21% O(2)) undergo temporary oxygen deprivation due to the lack of pre-existing blood vessels within these scaffolds. In the present study, the effects of temporary (48 h) exposure to hypoxia

    Desferrioxamine-driven upregulation of angiogenic factor expression by human bone marrow stromal cells

    No full text
    Bone marrow stromal cells (BMSCs) are the subject of intense research because of their biological properties and potential use for the repair of damaged tissues. Success of BMSC-based therapies, however, relies on a number of methodological improvements, including the establishment of a vascular network providing nutrients and oxygen to the transplanted cells and ensuring their immediate survival and long-term functionality. We described a method to enhance the autocrine expression of angiogenic factors by BMSCs. For this purpose, human BMSCs were treated with desferrioxamine (DFX). No PDGF-BB, VEGF-R1 or -R2 mRNA expression was detected under any of the conditions tested. mRNA and protein expression levels of TGFbeta1 were similar in BMSCs, whether they were exposed to DFX (50 microM) or to control conditions under normoxia for 48 h. In comparison with the results obtained with control conditions under normoxia, exposure of BMSCs to DFX for 48 h resulted in upregulation of bFGF at the protein (26-fold) but not at the mRNA levels and VEGF at both the mRNA (1.5-fold) and protein levels (4.5-fold). In comparison with the results obtained with control conditions under hypoxia, DFX induced a 50% increase in VEGF secretion but led to the same level of hypoxia inducible factor-1alpha protein expression (a transduction factor involved in angiogenic factor expression and known to be activated by DFX). Exposure of BMSCs to DFX resulted in oversecretion of angiogenic factors, suggesting that DFX-treated BMSCs could be used to supply angiogenic factors

    Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Get PDF
    Transplantation of mesenchymal stem cells (MSCs) with electrotransferred bone morphogenetic protein-2 (BMP-2) transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications

    De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model

    No full text
    Large bone defects are still a challenge to orthopedic surgeons. In this study, a massive bone defect with a clinically relevant volume was efficiently reconstructed by transplanting an engineered bone in which mesenchymal stem cells (MSCs) expanded in autologous serum (AS) were combined with a porous scaffold. In the first step, we established that the way in which the MSCs are distributed over the scaffold affects the ultimate bone-forming ability of the transplant: constructs consisting of a natural coral scaffold and a pseudo-periosteal layer of MSCs surrounding the implant (coral-MSC3D) formed significantly more bone than constructs in which the MSCs were distributed throughout the implant (p = 0.01). However, bone healing occurred in only one sheep, owing to the high resorption rate of natural coral scaffold. To overcome this problem, constructs in which MSCs were combined with a porous coralline-based hydroxyapatite (CHA) scaffold having the same architecture as natural coral but a lower resorption rate were prepared. After their implantation, these constructs were found to have the same osteogenic potential as autologous bone grafts in terms of the amount of newly formed bone present at 4 months (p = 0.89) and to have been completely replaced by newly formed, structurally competent bone within 14 months. Nevertheless, although the rate of bone healing was strikingly improved when CHA-MSC3D constructs were used (five of seven animals healed) as compared with the coral-MSC3D construct (one of seven healed), it was still less satisfactory than that obtained with autografts (five of five healed)
    corecore