6,146 research outputs found

    85% efficiency for cw frequency doubling from 1.08 to 0.54 μm

    Get PDF
    Conversion efficiency of 85% has been achieved in cw second-harmonic generation from 1.08 to 0.54 μm with a potassium titanyl phosphate crystal inside an external ring cavity. An absolute comparison between the experimental data and a simple theory is made and shows good agreement

    Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains

    Get PDF
    This paper studies the incompressible limit of the non-isentropic Navier-Stokes equations for viscous polytropic flows with zero thermal coefficient in three-dimensional bounded C4-domains. The uniform estimates in the Mach number, which exclude the estimate of high-order derivatives of the velocity in the normal directions to the boundary, are established within a short time interval independent of Mach number εε(0,1], provided that the initial data are well-prepared

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma

    Dispersion and fidelity in quantum interferometry

    Full text link
    We consider Mach-Zehnder and Hong-Ou-Mandel interferometers with nonclassical states of light as input, and study the effect that dispersion inside the interferometer has on the sensitivity of phase measurements. We study in detail a number of different one- and two-photon input states, including Fock, dual Fock, N00N states, and photon pairs from parametric downconversion. Assuming there is a phase shift Ï•0\phi_0 in one arm of the interferometer, we compute the probabilities of measurement outcomes as a function of Ï•0\phi_0, and then compute the Shannon mutual information between Ï•0\phi_0 and the measurements. This provides a means of quantitatively comparing the utility of various input states for determining the phase in the presence of dispersion. In addition, we consider a simplified model of parametric downconversion for which probabilities can be explicitly computed analytically, and which serves as a limiting case of the more realistic downconversion model.Comment: 12 pages, 14 figures. Submitted to Physical Review

    Demonstration of Temporal Distinguishability in a Four-Photon State and a Six-Photon State

    Full text link
    An experiment is performed to demonstrate the temporal distinguishability of a four-photon state and a six-photon state, both from parametric down-conversion. The experiment is based on a multi-photon interference scheme in a recent discovered NOON-state projection measurement. By measuring the visibility of the interference dip, we can distinguish the various scenarios in the temporal distribution of the pairs and thus quantitatively determine the degree of temporal (in)distinguishability of a multi-photon state

    Entanglement and interference between different degrees of freedom of photons states

    Full text link
    In this paper, photonic entanglement and interference are described and analyzed with the language of quantum information process. Correspondingly, a photon state involving several degrees of freedom is represented in a new expression based on the permutation symmetry of bosons. In this expression, each degree of freedom of a single photon is regarded as a qubit and operations on photons as qubit gates. The two-photon Hong-Ou-Mandel interference is well interpreted with it. Moreover, the analysis reveals the entanglement between different degrees of freedom in a four-photon state from parametric down conversion, even if there is no entanglement between them in the two-photon state. The entanglement will decrease the state purity and photon interference visibility in the experiments on a four-photon polarization state.Comment: 11 pages and 2 figure

    Multiuser Multihop MIMO Relay System Design Based on Mutual Information Maximization

    Get PDF
    In this paper, we consider multiuser multihop relay communication systems, where the users, relays, and the destination node may have multiple antennas. We address the issue of source and relay precoding matrices design to maximize the system mutual information (MI). By exploiting the linkbetween the maximal MI and the weighted minimal mean-squared error (WMMSE) objective functions, we show that the intractable maximal MI-based source and relay optimization problem can be solved via the WMMSE-based source and relay design through an iterative approach which is guaranteed toconverge to at least a stationary point. For the WMMSE problem, we derive the optimal structure of the relay precoding matrices and show that the WMMSE matrix at the destination node can be decomposed into the sum of WMMSE matrices at all hops. Under a (moderately) high signal-to-noise ratio (SNR) condition, this WMMSE matrix decomposition significantly simplifies the solution to the WMMSE problem. Numerical simulations are performed to demonstrate the effectiveness of the proposed algorithm

    Instability and Periodic Deformation in Bilayer Membranes Induced by Freezing

    Full text link
    The instability and periodic deformation of bilayer membranes during freezing processes are studied as a function of the difference of the shape energy between the high and the low temperature membrane states. It is shown that there exists a threshold stability condition, bellow which a planar configuration will be deformed. Among the deformed shapes, the periodic curved square textures are shown being one kind of the solutions of the associated shape equation. In consistency with recent expe rimental observations, the optimal ratio of period and amplitude for such a texture is found to be approximately equal to (2)^{1/2}\pi.Comment: 8 pages in Latex form, 1 Postscript figure. To be appear in Mod. Phys. Lett. B. 199

    Quantum non-demolition measurement of photon number with atom-light interferometers

    Get PDF
    When atoms are illuminated by an off-resonant field, the AC Stark effect will lead to phase shifts in atomic states. The phase shifts are proportional to the photon number of the off-resonant illuminating field. By measuring the atomic phase with newly developed atom-light hybrid interferometers, we can achieve quantum non-demolition measurement of the photon number of the optical field. In this paper, we analyze theoretically the performance of this QND measurement scheme by using the QND measurement criteria established by Holland et al [Phys. Rev. A 42, 2995 (1990)]. We find the quality of the QND measurement depends on the phase resolution of the atom-light hybrid interferometers. We apply this QND measurement scheme to a twin-photon state from parametric amplifier to verify the photon correlation in the twin beams. Furthermore, a sequential QND measurement procedure is analyzed for verifying the projection property of quantum measurement and for the quantum information tapping. Finally, we discuss the possibility for single-photon-number-resolving detection via QND measurement
    • …
    corecore