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Abstract: When atoms are illuminated by an off-resonant field, the AC Stark effect will lead
to phase shifts in atomic states. The phase shifts are proportional to the photon number of the
off-resonant illuminating field. By measuring the atomic phase with newly developed atom-light
hybrid interferometers, we can achieve quantum non-demolition measurement of the photon
number of the optical field. In this paper, we analyze theoretically the performance of this QND
measurement scheme by using the QND measurement criteria established by Holland et al [Phys.
Rev. A 42,2995 (1990)]. We find the quality of the QND measurement depends on the phase
resolution of the atom-light hybrid interferometers. We apply this QND measurement scheme to
a twin-photon state from parametric amplifier to verify the photon correlation in the twin beams.
Furthermore, a sequential QND measurement procedure is analyzed for verifying the projection
property of quantum measurement and for the quantum information tapping. Finally, we discuss
the possibility for single-photon-number-resolving detection via QND measurement.
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1. Introduction

Quantum nondemolition (QND) measurement [1,2] is a special type of measurement of a quantum
system in which the physical observable to be measured is not altered in the measurement process.
It requires the coupling of the system to be measured to another so-called meter system for easy
reading out and in the meantime must evade the back action of the measurement [3,4]. In optical
regime, commonly used scheme is the cross phase modulation through Kerr nonlinear interaction
between optical fields [5—10]. When working at single-photon level, it was suggested as a control
NOT-gate for quantum information processing [11]. However, recent study [12] casts doubt on
the validity of Kerr interaction at single-photon level. Other systems were also considered for
QND measurement [13-15].

When working in atomic ensemble, QND measurement in microwave regime had tremendous
success [16, 17] where AC Stark effect [18] was used for coupling photon number to atomic phase
shift and Ramsey interferometer [19—23] was used for precise atomic phase measurement. In
optical system, AC Stark effect was suggested for QND measurement of photon number by using
EIT method for atomic phase shift measurement [24]. However, the on-resonant EIT method can
not work for the short and off-resonant optical probe pulse. And the EIT process involves a strong
coupling field interacting simultaneously with a weak probe field at few-photon level. Thus it will
be difficult to separate the weak probe field from the strong coupling field and measure the weak
probe field with low loss and low noise. Recently a new type of hybrid interferometers involving
both atomic ensemble and light was demonstrated [25-28], and attracts lots of attention. This
type of interferometers is based on Raman interaction between atoms and light, and is sensitive
to both optical and atomic phase shift, so can be used to measure the atomic AC Stark phase shift
induced by an optical probe field. Compared with the EIT scheme, the QND measurement based
on the hybrid interferometers can work for short and off-resonant probe pulse. In this paper, we
investigate theoretically the QND measurement scheme using such hybrid interferometers. We
will use the QND measurement criteria derived by Holland et al [30] to assess the quality of this
measurement scheme. A sequential measurement scheme involving multiple QND measurement
processes is considered to verify the projection property of quantum measurement process.

The paper is organized as follows. In Sect.(2), we first introduce a quantum measurement
scheme of photon number via AC Stark effect, and QND measurement of photon number
by the atom-light interferometers. Then in Sect.(3), we discuss the case of non-ideal QND
measurement and apply the QND criteria to the QND schemes with atom-light interferometers.
In Sect.(4), we apply the QND measurement scheme on the photon number correlated state
of twin beam. In Sect.(5), we discuss the sequential QND problem and apply it to quantum
information tapping. We conclude in Sect.(6) with a summary and a discussion on the possiblility
for single-photon-number-resolving detection via this QND measurement.

2. QND measurement of photon nhumber
2.1.  Atomic phase shift by AC Stark effect

It is well-known that when atoms are subject to the illumination of an electromagnetic field
(denoted here as the probe field), their energy levels will be shifted [18]. When the frequency of
the probe field is near an atomic transition but is far off resonance with a large detuning A, the
interaction between atom and light will lead to an AC Stark shift in atomic level without atomic
absorption:

Awac = Q% /A, ()

Here Qg = |tge|Erms is the Rabi frequency for the interaction between the atom and light with
Hge as the dipole moment of the atomic transition and E,.,,s as the rms value of the electric field
of the electromagnetic field. Since the optical field intensity is I = cney|E,ms|*, the AC Stark
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shift is then proportional to the optical field intensity. Furthermore for a time period of AT, the
atomic state will accumulate a phase of

|,uge|21AT |ﬂge|2 PAT |,uge|2 Np
= A AT = = = e N N 2
pac wac cneA cnegA A cnegA A K @

with k = |uge |2/cnepAA is the AC Stark effect coefficient. Here n is the index of refraction of
the atomic medium, P is the power of the electromagnetic field (probe field), A is the cross
section of the field, and N, is the total number of photons illuminating the atoms. So the atomic
phase is dependent on the photon number of probe field. If we can measure the atomic phase
shift, we will be able to measure the photon number of the probe light. The atomic phase can be
measured by a new type of interferometers, which were recently demonstrated [27-29]. This type
of interferometers is an atom-light hybrid interferometer that involves both atoms and light in the
interference and is sensitive to the phases of both atoms and light. Furthermore, since the probe
light field is far off-resonant, the absorption effect on the probe light is negligible. Therefore,
the photon number of the probe field is not changed in the process. If the atomic phase can be
measured with enough precision, we can achieve a quantum non-demolition measurement (QND)
of the photon number of the probe field.

2.2. QND measurement of photon number by atom-light interferometers

Schematic of QND measurement with atom-light interferometers is given in Fig. 1(a). There
are two types of atom-light interferometers [28,29,32,33]. The first type is an analog of Mach-
Zehnder/Michaelson optical interferometer but with atom-light mixer replacing regular beam
splitters for linear superposition of atomic waves and optical waves [27,29]. We call it linear
atom-light interferometer, whose laser frequencies are shown in Fig. 1(b). The second type is
the newly developed SU(1,1) nonlinear interferometer [21-23,25,28,29,31-37]. This type of
interferometer utilizes parametric amplifiers to replace regular beam splitters for wave splitting
and recombination. We call it nonlinear atom-light interferometer, whose laser frequencies
are shown in Fig. 1(c). Both interferometers can be used to measure the phase information.
The difference is that the interference intensity of linear interferometer depends on the phase
difference and some common phase fluctuations in two interference beams can be canceled, but
SU(1,1) interferometer depends on phase sum, common fluctuations can not be canceled. So
phase locking on optical beam or magnetic shielding on atomic beam are needed in experiment.
However, in theory, SU(1,1) nonlinear interferometers are more sensitive than the traditional linear
interferometers with the same phase-sensing intensity [35] due to the noise reduction coming
from the quantum correlation between two interference beams. The improvement of 4.1dB
in signal-to-noise ratio has been demonstrated in atomic vapor under the same phase-sensing
intensity with 60uW [36]. Since both types can be used for atomic phase measurement, we will
analyze them in the following.

QND measurement schemes with two atom-light interferometers are similar. The atomic
ensemble by interaction with a strong coherent pump field acts like a beam splitter and mixer
for superposition of the atomic spin wave and optical wave. After the first interaction for wave
splitting, a superposition between the atomic and optical waves is created and the optical wave
travels out of the atomic ensemble but the atomic spin wave stays. After a delay through a fiber,
the optical wave returns and mixes with the atomic wave by a second interaction to complete the
interferometer, as in Fig. 1(a). During the delay, a probe field illuminates the atoms to induce an
atomic phase shift which is proportional to the photon number of the probe field. Measurement
of the atomic phase shift by the atom-light interferometers leads to the QND measurement of the
photon number of the probe field.

For a linear atom-light interferometer as shown in Fig. 1 (b), we can treat it like a regular
Mach-Zehnder interferometer but with one of the optical fields replaced by an atomic spin wave.
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Fig. 1. (a) Schematic of QND measurement with atom-light interferometers. |g) and |m) are
two ground state levels; |e|) and |e) are two excited state levels. Atoms are initially prepared
in the |g) ground state.The laser frequency of each optical field and corresponding signatures
of pump, optical and atomic fields are given in (b) and (c). (b) In the linear interferometer,
the strong pump field labeled as S, couples the state |m) and |e;), and generates an optical
signal field @y, and atomic spin wave S’é, as two beams of the interferometer. The RS is
shorted for Raman system. (c) In the nonlinear interferometer, the strong pump field labeled
as W, couples |g) and |e;) and generates an optical signal dé and atomic spin wave S’cll
Between the two Raman processes in the atom-light interferometers, the atomic spin wave
experiences a phase modulatiion A o¢ via the AC Stark effect by probe field Np.

The input-output relation is given by

agHt = &{,ﬁ cos /2 + S‘la" sin /2
§out = S cos /2 - aip sin@/2, 3)

where the optical signal field @y and the atomic spin wave S, are mixed via Raman processes
[35,37]. ¢ is the overall phase shift difference between the two beams of the interferometer.
When the atoms are illuminated by another field, denoted as the probe field, an extra phase shift
is introduced on atomic spin wave: ¢ = ¢g + Apac With Apac = KNP caused by AC Stark effect
as described in Sect.(2.1). The input to the atom-light interferometer is chosen to be at the atomic
spin wave: ($7") # 0. We assume it is in a coherent state |a): $|a) = a|a). We will measure
the photon number Ny of the output optical signal field agpy" as our meter quantity for the QND
measurement of probe field photon number N,

A

Nw = d‘z/)‘?ﬁaf\out

= diydiﬁ(l + cos go)/2 + 8 8in(] — cos ¢)/2

+sin @(aly S + h.c.)/2. @)
The interferometer is most sensitive to the phase change at ¢ = 7/2. So we set ¢g = 7/2
and assume Apac << /2. Making Taylor expansion around ¢y = 7/2, equation (4) can be
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approximated as

Nw ~ SISI(1 + Apac)/2 + (@018 + h.c.)/2
= SIS+ kN,) /2 + (a;g's;" +h.c.)/2. (5)

Here, since there is no input in A{;‘, field, we can assume it is in vacuum and drop those terms

that only involve this field. The above relation describes how the QND observable, which is the
photon number Np of the probe field, is coupled to the meter observable, which is the photon
number Ny of the output optical signal field, for measurement.

The general theoretical analysis for an SU(1,1) nonlinear interferometer is presented in
reference [35]. For an atom-light SU(1,1) interferometer, we use Raman amplifiers to replace
parametric amplifiers as shown in Fig. 1(c). So, we just need to replace the idler field by the
atomic spin field S, and the signal field by the field dg, then the input and output relation is given
by

aght = (G?e' + gh)al + Gg(1 + €'%)SI = Gr(g)ay' + gr(sa)ﬁi’_”,
S;;“’ Gg(l +e®)al + (G?e™ + g8 = gr(p)ay it +Gr(p)8im, (6)

where we assume that the amplitude gains for the two Raman amplifiers are the same and are
labeled as G and gZ = G — 1. The combined phase sensitive gains of the two Raman amplifiers
are Gr(p) = G*e'* + g2 and gr(¢p) = Gg(1 + ¢¥). Here the phase is ¢ = ¢o + Apac with ¢ as
the overall phase of the interferometer and Apac = KNP as the induced phase shift by the probe
field.

As shown in reference [35], the best sensitivity for SU(1,1) interferometer occurs at the dark
fringe. So we set ¢ = « for the overall gain Gy near unity and g7 near zero. From equation(6),
we find the information about the probe light in optical signal output a¢ ao"" and atomic spin wave
output 89%! are of the same form, so we make observation at the output optical field ag*' only. If
the induced phase shift Ap4c << 7, equation (6) can be approximated as

ag"" = —(1 +iG*Apac)al' — iGgApac S . (7

As shown in reference [35], in a SU(1,1) interferometer, we measure the quadrature amplitude
for precision phase measurement. So, the meter quantity is then

Xgut — aAgut + aAguﬁ'
= Xgn + GzA(pAc?sljn - Gg'A(pAc?;n
= =X{'+ KGN, (GYS" - gY;"), ®)

with Xin _ dtn lnT’ an AmT

ag' .Yy, = (dég”a) )) /i as the quadrature amplitude and phase.

2.3. Signal-to-noise ratio analysis

Next, let us examine the performance of the QND measurement process by signal-to-noise
analysis. For this, we place the probe field in a number state |n,,), which is the eigen-state of
the measurement process: ]\71, |n,) = nplnp), so that there is no uncertainty in the quantity to be
measured. We will calculate the signal-to-noise ratio (SNR) of the meter output. This provides
some indication of how good the QND measurement is. We start with the linear atom-light
interferometer.

2.3.1. Linear interferometer

Assume the input to the linear atom-light interferometer is like that the atomic spin wave beam
S." is in a coherent state and the optical field beam a A’vﬁ is in vacuum. It is straightforward to find
from equation (5) that:

(Nw) = lal*(1 + knp)/2. )
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So, the signal part extracted from the phase variation is (N )s = |a|?kn,, /2, with (dg’”ﬁg”) = |a|?
as the intensity of the input spin wave. The noise is

(A’Nw) = |a*(1 + knp)* 4 + | /4 ~ |af? /2. 10)
The approximation in the last equation is because we usually have «n, << 1. So the SNR is
R = (Nw): /(6 Nw) = lalPiPng, 2 = kn Lps, (an

where I, = |@|?/2 is the phase sensing photon number inside the interferometer. To have
single-photon resolution, we need AC effect interaction coefficient k ~ 1/4/1 s = 0soL. Here,
dsor is the standard quantum limit of phase measurement with a linear interferometer [38].

2.3.2. Nonlinear interferometer

Next, for the SU(1,1) interferometer with the probe field in a number state 1\7,, |np) = nplnp) and
the atomic spin wave input field in a coherent state and the input optical field in vacuum, the
meter quantity X in equation (8) has an expectation value of

(XY = —Ggknp (Y™, (12)
and the fluctuation of
(A°X“"y = 1+ GX(G* + g*)k’n,. (13)

Here the first term is from the vacuum noise of the input optical field &g" and the second term is
from the coupling between atom and light. Usually, « is very small so that most of the noise is
from input vacuum noise. So the signal-to-noise ratio is

|<)A(gut>|2 _ 4G2g2/<2n12,|a|2
(A2Xuy 1+ G2(G? + g)k’n},
~ 4G2g21<2nlz,|a|2 = 4G2K2n!2,1ps. (14)

Here, I, = g*|a|* is the phase sensing photon number inside the SU(1,1) interferometer. For
single-photon resolution, we need 4G?k*I,; ~ 1 or k ~ 1/2G+[I,s = 6501./2G. This value
is smaller by a factor of 1/2G than the one required with the linear atom-light interferometer.
Thus, the SU(1,1) interferometer has the advantage of using lower photon number inside the
interferometer to reach the same phase measurement sensitivity [35,36].

3. Nonideal QND measurement criteria

As we have seen in the previous section, even with the probe field in the eigen-state (number
state) of the measurement process, the meter output has fluctuation and does not yield a definite
value. This leads to a non-ideal QND measurement. For this kind of measurement, Holland et
al [30] derived a set of three criteria to test how close the measurement scheme is to an ideal QND
measurement. The first one is the non-demolition criterion: how much the measurement scheme
degrades the signal to be measured. Because we work with far off-resonant probe field, there is no
loss for the photon number of the probe field and thus the criterion for non-demolition is satisfied:
1\7;,’“’ = ]\7,’;". The second one is about how good the measurement scheme is a measurement
device. For this, we examine the correlation between the input signal S;,, and meter output M

ASinAM
Comt = K i (15)

VIS (M)
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For a good QND measurement, Cs,, »s — 1. The third one is about how good the measurement
scheme is as a state preparation device. For this, we examine the conditional variance of the
signal output upon the meter outcome Var(S,,;|M). For Gaussian process, we have

Var(Soul\M) = Var(Sou)(1 = C5. 1) (16)
Here Cs,,,, m is the correlation coefficient between the signal output and the meter output. For
Cs,.,.m — 1, we have Var(S,,;|M) — 0 and this corresponds to a perfect state preparation.

Furthermore, we have [39]

Var(Soun)(1 = C5,  4y) = (ASpur = AAM)* )y, (17)

ou

where the subscript “m" means the minimum value for an optimum value of parameter A.

In our scheme, the signal quantity is the photon number of the probe field: S = N, . Since we
have the non-demolition condition: NI’;" = NI‘,’“’ , the second and the third criteria become the
same: Cs,, m = Cs,,,.m. We will evaluate this quantity next.

outs

3.1.  QND measurement criteria applied to the linear atom-light interferometer

For simplicity of calculation, let us place the input probe field in a coherent state |,,). With both
the probe field and the input atomic spin wave field in coherent states and the input optical signal
field in vacuum, we can evaluate by using equation (4) the correlation coefficient

[{ANw AN, |
Cnwh, = = £ —. (18)
\(A2Nw )(A?N,)
It is straightforward to find
(ANwAN,) = «|al?|apl?/2. (19)
. al? Kla|?|a,?
(N’ Ny ) = %(1 + Klap?) + TP(W +la, >+ 1). (20)
(A*N,) = |ap . Q1)
So, the correlation coefficient is
1
Cnyn, = , (22)

1+|ap |2 L+k|ap |2
\/1 t oLt e, P
where I,y = |r|?/2 is the number of the atomic spin wave to sense the atomic phase shift inside
the linear interferometer. For Cp,, v, — 1, we will need [,5 >> |cy,,|2 and /<2Ips|cx,,|2 >> 1. For
the probe field at single-photon level (|, |> ~ 1), the first one is easy to satisfy but the second

one becomes k >> 1/4/I,; = dsor.. This simply implies that the interferometer, with a phase
resolution of the standard quantum limit ds5¢;., is able to resolve the single-photon phase shift «.

3.2. QND measurement criteria applied to the SU(1,1) nonlinear atom-light interferom-
eter

With both the probe field and the input atomic spin wave field in the coherent states and the input
optical field in vacuum, we can find the QND measurement quantity

(AN, AXs)|

Jeyarxs)

CN,xs = (23)
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We first calculate each term in equation (23). The results are

(AXsAN,) = 2Ggla|k|a, |*. (24)
(A’ Rs) = 1+G*g*Play*@lal* +la,* + 1)
+ GHPlap P (Jlap* + 1). (25)

With (A21\7p) in equation (21), the correlation coefficient is

1
Cn,xs = . (26)

g2+ 1)(1+|ap |?) 1
\/1 + 41])s + 4Gzlpsl<2|(1’p |2

Here I, = g°||? is the intensity of phase sensing spin wave inside the interferometer. Assuming
g* > 1, the condition for a perfect correlation Cy,xs ~ 1 is I,s > g*(1 + |a,|*) and
1,sk*|ap|? > 1/4G?. The right hand side of the inequality 7,;*|a,|* > 1/4G? is reduced by
a factor of 1/4G? compared to the one discussed in equation (22) for linear atom-light QND
measurement. This is due to sensitivity enhancement of the SU(1,1) interferometer.

Since the SU(1,1) interferometer has better sensitivity than the linear interferometer, we will
only examine this measurement scheme in the following applications.

4. Application to twin beams

For practical application of the QND measurement scheme, we can use it to confirm the photon
number correlation of the twin beams from an optical parametric amplifier (OPA, Fig. 2), which
has been demonstrated by direct photo-detection [40,41]. It is well-known that the output state of
a non-degenerate optical parametric amplifier is a correlated thermal state of the form

[TwBm) = ZO (ﬁfﬁmwn, @7)

where 7 is the average photon number and “s,i" denote the signal and idler fields of the two
outputs, respectively. So, the photon numbers of the two fields have perfect correlation coefficient:
Cn,n; = 1. That is why the fields in this state are called “twin beams".

idler Xi

_—

1
ALl ——>

OPA

—_

ALI
signal l ¥

S

Fig. 2. QND measurement on the twin beams with two atom-light interferometers (ALI). The
subscriptions s and i mean signal and idler. X and X; are the output fields of the atom-light
interferometers for signal and idler beams.
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We now make QND measurements on both fields of the twin beams simultaneously as shown
in Fig. 2. The two meter outputs ng), Xg) will show similar correlation depending on how well
the QND measurements are. Using equation (8) for the meter output and assuming the two QND
measurement schemes same parameters: G, g, «, @, it is straightforward to show that for the input

state in equation (27), the correlation coefficient C ) x @ is given by
S S
C ! (28)
xyxy ~ | 4 2+l Gi+g? 1
n+l 4y 4GZK21psfl(fl+])

This result is similar to that in equation (26) with a,-dependent terms replaced by 7-dependent
terms. Thus, the condition to obtain a perfect correlation of me 0 & 1 for the twin beams is
S S
similar: Ips >> G? and Ipsszlz >> 1/4G? for i >> 1.
The correlation coefficient can be measured experimentally from the variance of the difference:

o (s) OD\2y _ /A2 %(s) 2
((AXS" = AAXG)) = (A°X )1 - Cx§‘>x<5"))' 29)
Here again, A is an adjustable parameter for the lowest variance.

5. Sequential QND measurement and quantum information tapping

Another way to verify the properties of a QND measurement and make use of it for quantum
information distribution is the sequential measurement. Since a QND measurement is non-
destructive, the probe field after the first measurement should be the same as that before the
measurement. So we can make another measurement on the probe field and see if this measurement
is correlated with the previous one.

Probe

—_—

ALI ALl —>

bx, 9%

Fig. 3. Sequential QND measurement with atom-light interferometers(ALI). X5 and X é are
final quadrature outputs of ALI and ALT’.

The schematic is shown in Fig. 3. We denote the meter quantity of the second measurement as
X é We can then find the correlation coefficient Cx X4 of the two meter quantities Xg, X é by

measuring the variance in the difference: ((AXg — BAX é)z, which is related to the correlation
coeflicient Cx b

[(AXsAX)]
Cxsx, = ———— (30)

Jaxsyaexyy

Assuming the same coherent state and vacuum inputs for the two interferometers and a coherent

state |, ) at the probe field, we can use equation (8) for both Xg and X¢ but with different ¥,;"

and f(g” and find the correlation coefficient Cx Xy = szv Xs- Thus, a good QND measurement
)24
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in the each of the two measurements ensures good correlation between the two outputs of the
sequential measurement.

A very important property of quantum measurement is the state projection: the state of
the system after the measurement is projected to the eigen-state of the measurement process.
Subsequent measurement will not change this state because it is the eigen-state. For non-ideal
QND measurement process, the third criterion concerns the measurement for only single time.
For repeated measurements in a sequential QND measurement, we should expect better state
preparation. Thus, another quantity to confirm the quantum projection property of a sequential
QND measurement is the three-quantity correlation:

((AN, — AAXs - /l’AXé)z) = Var(Np|Xs, X¢), (€29

which is the conditional variance of the measured quantity upon the outcomes of the two
measurements. Here, parameters A, A’ are optimized to minimize the three-quantity correlation
function. By the projection property of quantum measurement theory, this quantity should be
smaller than Var(N,|Xs) because, in non-ideal QND measurements, each additional measurement
will narrow down the uncertainty in the measured quantity.

With the parameters A, A’ optimized, it is straightforward to show that

Var(Np|Xs, Xg)

2 2 _ / )
CN,,Xs + CN,,X’S 2CNst CN,,XS stxs

= (A’N,)[1- e
T XXy
1-&} Var(N,|X
_ <A2N > NpXS - ( p| S). (32)
P+ 2 1+C2

+ NpXS + NpXS

Here in the last line, we use Cxgx; = C12\/,, Xs = C3, - Since C12v, xs > 0, we therefore
pis D

have Var(N,|Xs, Xg) < Var(Ny|Xs), confirming the quantum projection property of QND
measurement. We may of course ask further what happens if we perform the QND measure-
ment M times. Following the same procedure above, we can show the conditional variance
Var(Ny|Xs, X§, ... X31) = Var(N,|Xs)/(1+ MCIZ\,PXS ). So, each additional QND measurement
will reduce the conditional variance further.

The above demonstrates the projection property of quantum measurement processes: measure-
ment of a physical quantity on a quantum system will project the state of the system to an
eigen-state of the measurement process and subsequent repeated measurement will not change
the eigen-state. Here the eigen-state of the measurement is the number state |n,,).

Next, we can use the sequential measurement processes to realize quantum information tapping,
that is, we can make multiple copies of the input signal for quantum information distribution. To
demonstrate this, we encode a modulation signal on the probe field, which is in a coherent state.
We can calculate the signal-to-noise ratios of the input R;'\’;P and the three outputs: R;{,’;’ , Rxs, Rxgs,
respectively. The signal outputs at Xg, X¢ are information taps for the input at the measured field.
We define the information transfer coefficients

out out out
R RY RY)
Ty, = —=, Txg = ——, Tx, = — (33)
P Rin ’ S Rin ’ S Rin ’
N, N, N,

Since there is no loss in the probe field, we have TNp = 1. For a coherent state input, we have
2 _ 2 _ 2 in _ 27/A2 _ 2 .

(A°Np) = |ep|” and (Np) = |a,|°, so RN,, = (Np)°/{A”N,) = |a,|". From equation (8), we

find (X3“') = 2kGglayp|*a. With (A?X) given in equation (25), we find

out

X
Txs = 2= = Chpxs = T (34)
Np
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Therefore
T, +Txs =Tn, +Tx; = 1 + C}VPXS > 1. (35)

The quantity one on the right hand side of the inequalities is the classical limit for information
tapping of signals at quantum level (quantum-noise limited signals). So, the correlation coefficient
is also a measure of how good the information tapping is.

6. Conclusion

In summary, we analyzed a quantum non-demolition measurement scheme of photon number
of an optical field, based on the AC Stark effect for photon-induced atomic phase shift and on
atom-light hybrid interferometers for precise measurement of the phase shift. We used the QND
criteria suggested by Holland et al [30] to access the quality of our measurement scheme. We
found that good QND measurement can be achieved when the phase resolution of the atom-light
interferometer is on par with the AC Stark phase shift induced by the field to be measured. We
applied this QND measurement scheme to a twin photon state and confirmed the photon number
correlation in the twin beam. The projection property of quantum measurement is confirmed with
sequential multiple QND measurements. Such a scheme can be used for quantum information
tapping in order to distribute multiple copies of information.

35
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Probe photon number np

Fig. 4. The quadrature amplitude ()?g’” ) as a function of the probe photon number n,,
showing that the meter signal is sensitive to probe photon number. The errorbar is the

fluctuation of meter signal quadrature amplitude (Az)?g“’ ). The data used in this graph is
calculated at k = 5.30 x 10~%rad, G? = 10, and I,,s = 8.91 x 10°.

When the QND measurement scheme achieves single-photon resolution, it can be used as
a non-destructive photon counter. From the equation (14) in Sect.(2.3.1), we know that this is
achieved when x > 1/2G \/I,,_Y . We can make an estimation of « from literature according to the
experimental data. In a rubidium atomic cell, we obtain an AC Stark shift of 1.5M Hz by 0.6mW
of probe power with 0.45mm of the spot size when the probe light is blue detuned 1GHz from the
transition >S5, F = 1) — |°Py )5, F = 2) [42]. For the atom-light interferometer demonstrated
in reference [28], we have a time duration of 100ns. At photon frequency detuning 1GHz from
the transition |5S1/2, F = 1> — ‘5P1/2, F = 2), we thus obtain a phase shift of 0.15rad for a
photon number of 2.35 x 10%, and finally the phase shift coefficient can be calculated to be
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k = 6.38 x 107'%rad per photon. To satisfy the criteria k > 1/2G+[I,,; under a gian G* = 10,
we need a very large power of phase sensing beam 1.57 x 10*W. This is difficult to realize
experimentally. In reference [29], we know that the magnitude of AC Stark shift is of the same
order for atomic vapor and cold atomic ensemble. And the atomic numbers in interaction region
for two atomic systems are both 10° — 10'° [28,29, 43]. To increase the interaction coefficient «,
we suggest to use the cold atomic ensemble in a cavity [44,45].

With 120M Hz detuning frequency of probe light, the absorption for probe in cold atomic
ensemble is very small and negligible. Using an optical cavity of a modest finesse of 107 [45]
to increase interaction between the probe field and spin wave, considering the loss of cavity is
small, we can obtain an improved interaction coefficient x = 5.30 x 10™*rad per photon. With a
typical Raman gain G* = 10, to make the signal-to-noise ratio R = 4G*k>I,,; ~ 10 for better
single-photon resolution, we obtain the phase sensing spin wave number (/) is 8.91 x 10°,
which is much smaller than the number of atoms on the |g) level (N) ~ 10° — 10'° in interaction
region [28,29], and corresponding power of 100ns optical sgnal pulse (Py;g) is 2.27uW, which
is also much smaller than the pump power (Pp.mp) of several to tens of milliwatts [28,29].
This power is easy to realize in experiment. And in future experiments, the suggested ratios of
Ips/N and Pg;g/Ppump should be both smaller than 0.1%, which could guarantee that the pump
power and the number of atoms on the |g) level can be treated as constants in wave splitting and
recombination processes in theory.

When such interferometer is used to detect the photon number in probe pulse, we can assume
the probe pulse is at Fock state to calculate the expectation and fluctuation of quadrature amplitude
of the output meter signals of the interferometer. The output quadrature amplitude expectation

and fluctuation are (Xg”’) = 2Gknp+[I,s and \/(A2X§”’> = \/1 + G2(G? + g?)k?n3,, in which

()?g“’ ) oc np, (the photon number contained in the probe pulse) but /(AZXgut Y =~ 1 due to small

k value. The calculation result is given in Fig. 4. This figure shows the photon-number-resolving
ability of the atom-light hybrid SU(1,1) interferometer.
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