38 research outputs found

    Climatology of near-surface wind speed from observational, reanalysis and high-resolution regional climate model data over the Tibetan Plateau

    Get PDF
    As near-surface wind speed plays a role in regulating surface evaporation and thus the hydrological cycle, it is crucial to explore its spatio-temporal characteristics. However, in-situ measurements are scarce over the Tibetan Plateau, limiting the understanding of wind speed climate across this high-elevation region. This study explores the climatology of near-surface wind speed over the Tibetan Plateau by using for the frst time homogenized observations together with reanalysis products and regional climate model simulations. Measuring stations across the center and the west of the plateau are at higher elevations and display higher mean and standard deviation, confrming that wind speed increases with increasing altitude. By exploring wind characteristics with a focus on seasonal cycle through cluster analysis, three regions of distinct wind regimes can be identifed: (1) the central Tibetan Plateau, characterized by high elevation; (2) the eastern and the peripheral areas of the plateau; and (3) the Qaidam basin, a topographic depression strongly infuenced by the blocking efect of the surrounding mountainous terrain. Notably, the ERA5 reanalysis, with its improvements in horizontal, vertical, and temporal spacing, model physics and data assimilation, demonstrates closer agreement to the measured wind conditions than its predecessor ERA-Interim. It successfully reproduces the three identifed wind regimes. However, the newest ERA5-Land product does not show improvements compared to ERA5, most likely because they share most of the parametrizations. Furthermore, the two dynamical downscalings of ERA5 analyzed here fail to capture the observed wind statistics and exhibit notable biases and discrepancies also when investigating the diurnal variations. Consequently, these high-resolution downscaling products do not show add value in reproducing the observed climatology of wind speed compared to ERA5 over the Tibetan Plateau

    Mesoscale convective systems in the third pole region: Characteristics, mechanisms and impact on precipitation

    Get PDF
    The climate system of the Third Pole region, including the (TP) and its surroundings, is highly sensitive to global warming. Mesoscale convective systems (MCSs) are understood to be a vital component of this climate system. Driven by the monsoon circulation, surface heating, and large-scale and local moisture supply, they frequently occur during summer and mostly over the central and eastern TP as well as in the downstream regions. Further, MCSs have been highlighted as important contributors to total precipitation as they are efficient rain producers affecting water availability (seasonal precipitation) and potential flood risk (extreme precipitation) in the densely populated downstream regions. The availability of multi-decadal satellite observations and high-resolution climate model datasets has made it possible to study the role of MCSs in the under-observed TP water balance. However, the usage of different methods for MCS identification and the different focuses on specific subregions currently hamper a systematic and consistent assessment of the role played by MCSs and their impact on precipitation over the TP headwaters and its downstream regions. Here, we review observational and model studies of MCSs in the TP region within a common framework to elucidate their main characteristics, underlying mechanisms, and impact on seasonal and extreme precipitation. We also identify major knowledge gaps and provide suggestions on how these can be addressed using recently published high-resolution model datasets. Three important identified knowledge gaps are 1) the feedback of MCSs to other components of the TP climate system, 2) the impact of the changing climate on future MCS characteristics, and 3) the basin-scale assessment of flood and drought risks associated with changes in MCS frequency and intensity. A particularly promising tool to address these knowledge gaps are convection-permitting climate simulations. Therefore, the systematic evaluation of existing historical convection-permitting climate simulations over the TP is an urgent requirement for reliable future climate change assessments

    Contrasting fate of western Third Pole's water resources under 21st century climate change

    Get PDF
    Seasonal melting of glaciers and snow from the western Third Pole (TP) plays important role in sustaining water supplies downstream. However, the future water availability of the region, and even today’s runoff regime, are both hotly debated and inadequately quantified. Here, we characterize the contemporary flow regimes and systematically assess the future evolution of total water availability, seasonal shifts, and dry and wet discharge extremes in four most meltwater-dominated basins in the western TP, by using a process-based, well-established glacier-hydrology model, well-constrained historical reference climate data, and the ensemble of 22 global climate models with an advanced statistical downscaling and bias correction technique. We show that these basins face sharply diverging water futures under 21st century climate change. In RCP scenarios 4.5 and 8.5, increased precipitation and glacier runoff in the Upper Indus and Yarkant basins more than compensate for decreased winter snow accumulation, boosting annual and summer water availability through the end of the century. In contrast, the Amu and Syr Darya basins will become more reliant on rainfall runoff as glacier ice and seasonal snow decline. Syr Darya summer river-flows, already low, will fall by 16–30% by end-of-century, and striking increases in peak flood discharge (by >60%), drought duration (by >1 month) and drought intensity (by factor 4.6) will compound the considerable water-sharing challenges on this major transboundary river

    Contribution of Recycled and External Advected Moisture to Precipitation and Its Inter-annual Variation over the Tibetan Plateau

    No full text
    Data used in the manuscript "Contribution of Recycled and External Advected Moisture to Precipitation and Its Inter-annual Variation over the Tibetan Plateau" which will be submitted to Journal of Geophysical Research: Atmospheres

    An Overview of Vegetation Dynamics Revealed by Remote Sensing and Its Feedback to Regional and Global Climate

    No full text
    Vegetation, as one of the crucial underlying land surfaces, plays an important role in terrestrial ecosystems and the Earth’s climate system through the alternation of its phenology, type, structure, and function [...
    corecore