301 research outputs found

    New insight into the molecular control of bacterial functional amyloids.

    Get PDF
    New insight into the molecular control of bacterial functional amyloids. Front. Cell. Infect. Microbiol. 5:33. doi: 10.3389/fcimb.2015.00033 New insight into the molecular control of bacterial functional amyloid

    Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics

    Full text link
    Chevron rollovers of some proteins imply that their logarithmic folding rates are nonlinear in native stability. This is predicted by lattice and continuum G\=o models to arise from diminished accessibilities of the ground state from transiently populated compact conformations under strongly native conditions. Despite these models' native-centric interactions, the slowdown is due partly to kinetic trapping caused by some of the folding intermediates' nonnative topologies. Notably, simple two-state folding kinetics of small single-domain proteins are not reproduced by common G\=o-like schemes.Comment: 10 pages, 4 Postscript figures (will appear on PRL

    The transcriptional regulator GalR self-assembles to form highly regular tubular structures

    Get PDF
    The Gal repressor regulates transport and metabolism of D-galactose in Escherichia coli and can mediate DNA loop formation by forming a bridge between adjacent or distant sites. GalR forms insoluble aggregates at lower salt concentrations in vitro, which can be solubilized at higher salt concentrations. Here, we investigate the assembly and disassembly of GalR aggregates. We find that a sharp transition from aggregates to soluble species occurs between 200 and 400 mM NaCl, incompatible with a simple salting-in effect. The aggregates are highly ordered rod-like structures, highlighting a remarkable ability for organized self-assembly. Mutant studies reveal that aggregation is dependent on two separate interfaces of GalR. The highly ordered structures dissociate to smaller aggregates in the presence of D-galactose. We propose that these self-assembled structures may constitute galactose-tolerant polymers for chromosome compaction in stationary phase cells, in effect linking self-assembly with regulatory function

    Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization

    Get PDF
    [Image: see text] α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized β-sheet structures that accumulate in plaques in brains of Parkinson’s disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation
    • …
    corecore