176 research outputs found

    Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

    Get PDF
    The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K

    Terahertz Rectennas on Flexible Substrates Based on One-Dimensional Metal–Insulator–Graphene Diodes

    Get PDF
    Flexible energy harvesting devices fabricated in scalable thin-film processes are crucial for wearable electronics and the Internet of Things. We present a flexible rectenna based on a one-dimensional junction metal–insulator–graphene diode, offering low-noise power detection at terahertz (THz) frequencies. The rectennas are fabricated on a flexible polyimide film in a scalable process by photolithography using graphene grown by chemical vapor deposition. A one-dimensional junction reduces the junction capacitance and enables operation up to 170 GHz. The rectenna shows a maximum responsivity of 80 V/W at 167 GHz in free space measurements and minimum noise equivalent power of 80 pW/√Hz

    Response theory for time-resolved second-harmonic generation and two-photon photoemission

    Full text link
    A unified response theory for the time-resolved nonlinear light generation and two-photon photoemission (2PPE) from metal surfaces is presented. The theory allows to describe the dependence of the nonlinear optical response and the photoelectron yield, respectively, on the time dependence of the exciting light field. Quantum-mechanical interference effects affect the results significantly. Contributions to 2PPE due to the optical nonlinearity of the surface region are derived and shown to be relevant close to a plasmon resonance. The interplay between pulse shape, relaxation times of excited electrons, and band structure is analyzed directly in the time domain. While our theory works for arbitrary pulse shapes, we mainly focus on the case of two pulses of the same mean frequency. Difficulties in extracting relaxation rates from pump-probe experiments are discussed, for example due to the effect of detuning of intermediate states on the interference. The theory also allows to determine the range of validity of the optical Bloch equations and of semiclassical rate equations, respectively. Finally, we discuss how collective plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe

    Therapeutic apheresis in peripheral and retinal circulatory disorders

    Get PDF
    In microcirculation disorders, the therapeutic apheresis seems to have two different effects. The first, achieved after only a few sessions, is acute, consisting of drastic reduction of blood viscosity and obtained with the use of low-density lipoprotein (LDL) apheresis, rheopheresis, or fibrinogen apheresis. The second effect is long term, or chronic, and needs to be evaluated after a long course of treatment. The mechanisms underlying the chronic effect are still objects of debate and take into account the pleiotropic effects of apheresis. However, it is likely that the acute effect of apheresis mainly influences the functional components of the vascular damage, and so the derived rheological benefit might last only for a short period. The chronic effect, on the contrary, by acting on the morphological alterations of the vascular walls, requires the apheresis treatment to be prolonged for a longer period or even cycles of treatment to be programmed

    Conversion of the PS complex as LHC proton pre-injector

    Get PDF
    CERNs Large Hadron Collider (LHC) [1][2] will be supplied with protons from the injector chain Linac2-PS Booster (PSB)-PS-SPS (Fig. 1). The required transverse beam brilliance (intensity/emittance) is almost twice that of current PS beams and the LHC bunch spacing of 25 ns must be impressed on the beam before its transfer to the SPS. The scheme involves new RF harmonics in the PSB and the PS, an increase of the PSB energy, and two-batch filling of the PS. After a successful test of the main ingredients, a project for converting the PS complex was launched in 1994. Major additions are (i) h=1 RF systems in the PSB, (ii) upgrading of the PSB main magnet supply from 1 to 1.4 GeV operation, (iii) new magnets, septa, power supplies, kicker pulsers for the PSB-PS beam transfer, (iv) 40 and 80 MHz systems in the PS, (v) beam profile measurement devices with improved resolution. A significant part of the effort is being provided by TRIUMF under the Canada-CERN co-operation agreement on the LHC

    The PS complex produces the nominal LHC beam

    Get PDF
    The LHC [1] will be supplied, via the SPS, with protons from the pre-injector chain comprising Linac2, PS Booster (PSB) and PS. These accelerators have under-gone a major upgrading programme [2] during the last five years so as to meet the stringent requirements of the LHC. These imply that many high-intensity bunches of small emittance and tight spacing (25 ns) be available at the PS extraction energy (25 GeV). The upgrading project involved an increase of Linac2 current, new RF systems in the PSB and the PS, raising the PSB energy from 1 to 1.4 GeV, two-batch filling of the PS and the installation of high-resolution beam profile measurement devices. With the project entering its final phase and most of the newly installed hardware now being operational, the emphasis switches to producing the nominal LHC beam and tackling the associated beam physics problems. While a beam with transverse characteristics better than nominal has been obtained, the longitudinal density still needs to be increased. An alternative scheme to produce the 25 ns bunch spacing is outlined, together with other promising developments
    • …
    corecore