109 research outputs found

    Betriebsverhalten von Wälzlagerschutzdichtungen : experimentelle Untersuchungen und Berechnungsansätze

    Get PDF
    [no abstract

    Novel approach to recycling of steel swarf using hydrometallurgy

    Get PDF
    Steel swarf is a hazardous waste which is challenging to recycle due to its high content of heavy metals and cutting fluids and is today commonly landfilled. The swarf can contain up to 80% iron and represents a potential secondary raw material for production of reagents like ferric chloride, which can be utilized in wastewater treatment. This work presents a novel hydrometallurgical approach for recycling steel swarf and production of ferric chloride by selective separation of iron from heavy metals. Swarf containing 69% iron was leached with hydrochloric acid. A leachate containing 24.600 mg/L Fe with 150 mg/L Mn, 12 mg/L Ni and <1 mg/L Cr and Mo was obtained. The oil-based cutting fluids largely remained in the solid residue with only 1% dissolution in the aqueous phase. These findings showed that ferric chloride solutions of 99% purity can be produced from steel swarf in a single leaching step

    1H and 13C resonance assignments of a guanine sensing riboswitch’s terminator hairpin

    Get PDF
    Here we report the nearly complete base assignments and partial sugar assignments of the 35-residue terminator hairpin of the Bacillus subtilisxpt-pbuX-mRNA guanine sensing riboswitch

    Cognitive map formation through tactile map navigation in visually impaired and sighted persons

    Get PDF
    The human brain can form cognitive maps of a spatial environment, which can support wayfinding. In this study, we investigated cognitive map formation of an environment presented in the tactile modality, in visually impaired and sighted persons. In addition, we assessed the acquisition of route and survey knowledge. Ten persons with a visual impairment (PVIs) and ten sighted control participants learned a tactile map of a city-like environment. The map included five marked locations associated with different items. Participants subsequently estimated distances between item pairs, performed a direction pointing task, reproduced routes between items and recalled item locations. In addition, we conducted questionnaires to assess general navigational abilities and the use of route or survey strategies. Overall, participants in both groups performed well on the spatial tasks. Our results did not show differences in performance between PVIs and sighted persons, indicating that both groups formed an equally accurate cognitive map. Furthermore, we found that the groups generally used similar navigational strategies, which correlated with performance on some of the tasks, and acquired similar and accurate route and survey knowledge. We therefore suggest that PVIs are able to employ a route as well as survey strategy if they have the opportunity to access route-like as well as map-like information such as on a tactile map

    Cognitive map formation supported by auditory, haptic, and multimodal information in persons with blindness

    Get PDF
    For efficient navigation, the brain needs to adequately represent the environment in a cognitive map. In this review, we sought to give an overview of literature about cognitive map formation based on non-visual modalities in persons with blindness (PWBs) and sighted persons. The review is focused on the auditory and haptic modalities, including research that combines multiple modalities and real-world navigation. Furthermore, we addressed implications of route and survey representations. Taking together, PWBs as well as sighted persons can build up cognitive maps based on non-visual modalities, although the accuracy sometime somewhat differs between PWBs and sighted persons. We provide some speculations on how to deploy information from different modalities to support cognitive map formation. Furthermore, PWBs and sighted persons seem to be able to construct route as well as survey representations. PWBs can experience difficulties building up a survey representation, but this is not always the case, and research suggests that they can acquire this ability with sufficient spatial information or training. We discuss possible explanations of these inconsistencies

    Tailoring the Curing Kinetics of NBR-Based Rubber Compounds for Additive Manufacturing of Rod Seals

    Get PDF
    The additive manufacturing (AM) of elastomeric parts based on high-viscosity reinforced rubbers has increasingly become a topic of scientific research in recent years. In addition to the viscosity, which is several decades higher during processing than the viscosities of thermoplastics, the flowability of the compound after the printing process and the necessary chemical crosslinking of the printed component play a decisive role in producing an elastic, high-quality, and geometrically stable part. After the first technological achievements using the so-called additive manufacturing of elastomers (AME) process, the knowledge gained has to be transferred first to concrete industrial parts. Therefore, in this study, the cure kinetics of a conventional rubber compound are tailored to match the specific requirements for scorch safety in the additive manufacturing of an industrial 2-component rod seal based on an acrylonitrile butadiene rubber O-ring in combination with a thermoplastic polyurethane as the base body. Experimental tests on a test rig for rod seals demonstrate the functionality of this additively manufactured 2-component rod seal

    Solvent extraction of cobalt from spent lithium-ion batteries: Dynamic optimization of the number of extraction stages using factorial design of experiments and response surface methodology

    Get PDF
    The optimization of lithium-ion batteries (LiBs) recycling is crucial not only from a waste management perspective but also to decrease the dependence on imports of critical raw materials. In addition, the diversification of the recycling technologies is very important for better flexibility of the market. This study aims at investigating the recovery of Co from spent LiBs using solvent extraction from a real chloride-based solution obtained after the removal of Mn, which is very rarely reported. Cyanex 272 was used as the extractant and the effect of several variables on the extraction efficiency was considered to model and optimize the separation of Co and Ni. The number of extraction stages directly affects not only the process efficiency but also its cost. Thus, in this work, a novel approach was developed to assist in the selection of the number of extraction stages using a dynamic method based on the factorial design of experiments and response surface methodology combined with the Kremseŕs Equation. This method can assist the process design, decrease the overall cost of the operation, and optimize the separation of Co and Ni in a reduced number of extraction stages. The concentration of Co and Ni in the feed solutions is ∼ 8.3 g/L and 1.9 g/L, respectively. Based on the results, 98% extraction efficiency for Co can be achieved in 1 to 2 extraction stages with low co-extraction of Ni (<5%) when using 0.6–0.8 M Cyanex 272, O:A ratio below 1 and pH ∼ 5, but several combinations of conditions could provide similar results

    Nuclear imaging does not have clear added value in patients with low a priori chance of periprosthetic joint infection. A retrospective single-center experience

    Get PDF
    Background: A low-grade periprosthetic joint infection (PJI) may present without specific symptoms, and its diagnosis remains a challenge. Three-phase bone scintigraphy (TPBS) and white blood cell (WBC) scintigraphy are incorporated into recently introduced diagnostic criteria for PJI, but their exact value in diagnosing low-grade PJI in patients with nonspecific symptoms remains unclear. Methods: In this retrospective study, we evaluated patients with a prosthetic joint of the hip or knee who underwent TPBS and/or WBC scintigraphy between 2009 and 2016 because of nonspecific symptoms. We reviewed and calculated diagnostic accuracy of the TPBS and/or WBC scintigraphy to diagnose or exclude PJI. PJI was defined based on multiple cultures obtained during revision surgery. In patients who did not undergo revision surgery, PJI was ruled out by clinical follow-up of at least 2 years absent of clinical signs of infection based on MSIS 2011 criteria. Results: A total of 373 patients were evaluated, including 340 TPBSs and 142 WBC scintigraphies. Thirteen patients (3.5 %) were diagnosed with a PJI. TPBS sensitivity, specificity, and positive and negative predictive values (PPV, NPV) were 71 %, 65 %, 8 % and 98 %, respectively. Thirty-five percent of TPBS showed increased uptake. Stratification for time intervals between the index arthroplasty and the onset of symptoms did not alter its diagnostic accuracy. WBC scintigraphy sensitivity, specificity, PPV and NPV were 30 %, 90 %, 25 % and 94 %, respectively. Conclusion: Nuclear imaging does not have clear added value in patients with low a priori chance of periprosthetic joint infection

    Tertiary contacts control switching of the SAM-I riboswitch

    Get PDF
    Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find that the stabilization of key tertiary contacts controls both aptamer domain collapse and the switching of the SAM-I riboswitch from the aptamer to the expression platform conformation. Our experiments demonstrate that SAM binding induces structural alterations that indirectly stabilize the aptamer domain, preventing switching toward the expression platform conformer. These results, combined with a variety of structural probing experiments performed in this study, show that the collapse and stabilization of the aptamer domain are cooperative, relying on the sum of key tertiary contacts and the bimodal stability of the kink-turn motif for function. Here, ligand binding serves to shift the equilibrium of aptamer domain structures from a more open toward a more stable collapsed form by stabilizing tertiary interactions. Our data show that the thermodynamic landscape for riboswitch operation is finely balanced to allow large conformational rearrangements to be controlled by small molecule interactions
    corecore