179 research outputs found

    Coexistence Patterns of Two Invasive Thistle Species, Carduus nutans and C. acanthoides, at Three Spatial Scales

    Get PDF
    To better understand the competitive processes involved in invasion by congeners, we examine coexistence patterns of two invasive species, Carduus nutans and C. acanthoides, at three spatial scales. A roadside survey of 5 × 5 km blocks in a previously identified overlap zone provided information about the regional scale. At smaller scales, we surveyed four fields of natural co-occurrence, quantifying the spatial patterns at the field scale by randomly placed 1 × 1 m quadrats and at the smallest scale by detailing plant position within the quadrats. The patterns observed are strikingly different at the different scales. At the regional scale, there is positive local autocorrelation in both species but negative cross-correlation between them, consistent with previous surveys. However, at the field scale, there is positive local autocorrelation in both species, and we generally see a positive association between the two species. At the plot scale, when excluding areas of joint absence, there is again a negative association between the two species. This pattern can also be seen at the field scale when excluding plots with joint absence. These results suggest that, at the scale of a field, the strongest factor determining location is aggregation in favorable habitats, which is a stronger force than the competition-induced segregation evidenced at small scales. Lottery competition for spatially aggregated safe sites thus appears to drive the patterns observed at the field scale, while the regional scale pattern may be a result of restricted natural dispersal and invasion history

    Pathogens, Social Networks, and the Paradox of Transmission Scaling

    Get PDF
    Understanding the scaling of transmission is critical to predicting how infectious diseases will affect populations of different sizes and densities. The two classic “mean-field” epidemic models—either assuming density-dependent or frequency-dependent transmission—make predictions that are discordant with patterns seen in either within-population dynamics or across-population comparisons. In this paper, we propose that the source of this inconsistency lies in the greatly simplifying “mean-field” assumption of transmission within a fully-mixed population. Mixing in real populations is more accurately represented by a network of contacts, with interactions and infectious contacts confined to the local social neighborhood. We use network models to show that density-dependent transmission on heterogeneous networks often leads to apparent frequency dependency in the scaling of transmission across populations of different sizes. Network-methodology allows us to reconcile seemingly conflicting patterns of within- and across-population epidemiology

    Slow Spread of the Aggressive Invader, Microstegium vimineum (Japanese Stiltgrass)

    Get PDF
    Microstegium vimineum (Japanese stiltgrass) is a non-native weed whose rapid invasion threatens native diversity and regeneration in forests. Using data from a 4 year experiment tracking new invasions in different habitats, we developed a spatial model of patch growth, using maximum likelihood techniques to estimate dispersal and population growth parameters. The patches expanded surprisingly slowly: in the final year, the majority of new seedlings were still within 1 m of the original patch. The influence of habitat was not as strong as anticipated, although patches created in roadside and wet meadow habitats tended to expand more rapidly and had greater reproductive ratios. The long-term projections of the patch growth model suggest much slower spread than has typically been observed for M. vimineum. The small scale of natural dispersal suggests that human-mediated dispersal, likely influenced by forest road management, is responsible for the rapid spread of this invasive species

    Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough

    Get PDF
    Metapopulation rescue effects are thought to be key to the persistence of many acute immunizing infections. Yet the enhancement of persistence through spatial coupling has not been previously quantified. Here we estimate the metapopulation rescue effects for four childhood infections using global WHO reported incidence data by comparing persistence on island countries vs all other countries, while controlling for key variables such as vaccine cover, birth rates and economic development. The relative risk of extinction on islands is significantly higher, and approximately double the risk of extinction in mainland countries. Furthermore, as may be expected, infections with longer infectious periods tend to have the strongest metapopulation rescue effects. Our results quantitate the notion that demography and local community size controls disease persistence

    The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk

    Get PDF
    Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population’s capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk

    Supply chains create global benefits from improved vaccine accessibility

    Get PDF
    Ensuring a more equitable distribution of vaccines worldwide is an effective strategy to control global pandemics and support economic recovery. We analyze the socioeconomic effects - defined as health gains, lockdown-easing effect, and supply-chain rebuilding benefit - of a set of idealized COVID-19 vaccine distribution scenarios. We find that an equitable vaccine distribution across the world would increase global economic benefits by 11.7% ($950 billion per year), compared to a scenario focusing on vaccinating the entire population within vaccine-producing countries first and then distributing vaccines to non-vaccine-producing countries. With limited doses among low-income countries, prioritizing the elderly who are at high risk of dying, together with the key front-line workforce who are at high risk of exposure is projected to be economically beneficial (e.g., 0.9%~3.4% annual GDP in India). Our results reveal how equitable distributions would cascade more protection of vaccines to people and ways to improve vaccine equity and accessibility globally through international collaboration

    Peste des petits ruminants virus transmission scaling and husbandry practices that contribute to increased transmission risk: an investigation among sheep, goats, and cattle in Northern Tanzania

    Get PDF
    Peste des petits ruminants virus (PPRV) causes an infectious disease of high morbidity and mortality among sheep and goats which impacts millions of livestock keepers globally. PPRV transmission risk varies by production system, but a deeper understanding of how transmission scales in these systems and which husbandry practices impact risk is needed. To investigate transmission scaling and husbandry practice-associated risk, this study combined 395 household questionnaires with over 7115 cross-sectional serosurvey samples collected in Tanzania among agropastoral and pastoral households managing sheep, goats, or cattle (most managed all three, n = 284, 71.9%). Although self-reported compound-level herd size was significantly larger in pastoral than agropastoral households, the data show no evidence that household herd force of infection (FOI, per capita infection rate of susceptible hosts) increased with herd size. Seroprevalence and FOI patterns observed at the sub-village level showed significant spatial variation in FOI. Univariate analyses showed that household herd FOI was significantly higher when households reported seasonal grazing camp attendance, cattle or goat introduction to the compound, death, sale, or giving away of animals in the past 12 months, when cattle were grazed separately from sheep and goats, and when the household also managed dogs or donkeys. Multivariable analyses revealed that species, production system type, and goat or sheep introduction or seasonal grazing camp attendance, cattle or goat death or sales, or goats given away in the past 12 months significantly increased odds of seroconversion, whereas managing pigs or cattle attending seasonal grazing camps had significantly lower odds of seroconversion. Further research should investigate specific husbandry practices across production systems in other countries and in systems that include additional atypical host species to broaden understanding of PPRV transmission
    corecore