393 research outputs found

    Unconventional Charge Ordering in Na0.70CoO2 below 300 K

    Full text link
    We present the results of measurements of the dc-magnetic susceptibility chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50 and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is found in chi(T). Our data suggest the onset of a dramatic change in the Co 3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our results maybe interpreted as evidence for either a tendency to electron localization or an unconventional charge-density wave phenomenon within the cobalt oxide layer, CoO_2, 3d electron system near room temperature.Comment: 4 pages, 4 figures, re-submitted to Physical Review Letters. The manuscript has been revised following the recommendations of the referees. The discussion section contains substantial change

    Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of UPt3UPt_3

    Get PDF
    We discuss possible magnetic structures in UPt3_3 based on our analysis of elastic neutron-scattering experiments in high magnetic fields at temperatures T<TNT<T_N. The existing experimental data can be explained by a single-{\bf q} antiferromagnetic structure with three independent domains. For modest in-plane spin-orbit interactions, the Zeeman coupling between the antiferromagnetic order parameter and the magnetic field induces a rotation of the magnetic moments, but not an adjustment of the propagation vector of the magnetic order. A triple-{\bf q} magnetic structure is also consistent with neutron experiments, but in general leads to a non-uniform magnetization in the crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure

    Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience.

    Get PDF
    BACKGROUND: Uveal melanoma exhibits a high incidence of metastases; and, to date, there is no systemic therapy that clearly improves outcomes. The anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody ipilimumab is a standard of care for metastatic melanoma; however, the clinical activity of CTLA-4 inhibition in patients with metastatic uveal melanoma is poorly defined. METHODS: To assess ipilimumab in this setting, the authors performed a multicenter, retrospective analysis of 4 hospitals in the United States and Europe. Clinical characteristics, toxicities, and radiographic disease burden, as determined by central, blinded radiology review, were evaluated. RESULTS: Thirty-nine patients with uveal melanoma were identified, including 34 patients who received 3 mg/kg ipilimumab and 5 who received 10 mg/kg ipilimumab. Immune-related response criteria and modified World Health Organization criteria were used to assess the response rate (RR) and the combined response plus stable disease (SD) rate after 12 weeks, after 23 weeks, and overall (median follow-up, 50.4 weeks [12.6 months]). At week 12, the RR was 2.6%, and the response plus SD rate was 46.%; at week 23, the RR was 2.6%, and the response plus SD rate was 28.2%. There was 1 complete response and 1 late partial response (at 100 weeks after initial SD) for an immune-related RR of 5.1%. Immune-related adverse events were observed in 28 patients (71.8%) and included 7 (17.9%) grade 3 and 4 events. Immune-related adverse events were more frequent in patients who received 10 mg/kg ipilimumab than in those who received 3 mg/kg ipilimumab. The median overall survival from the first dose of ipilimumab was 9.6 months (95% confidence interval, 6.3-13.4 months; range, 1.6-41.6 months). Performance status, lactate dehydrogenase level, and an absolute lymphocyte count ≥ 1000 cells/μL at week 7 were associated significantly with survival. CONCLUSIONS: In this multicenter, retrospective analysis of 4 hospitals in the United States and Europe of patients with uveal melanoma, durable responses to ipilimumab and manageable toxicity were observed

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and Hi overview

    Get PDF
    Context. The Galactic plane has been observed extensively by a large number of Galactic plane surveys from infrared to radio wavelengths at an angular resolution below 40". However, a 21 cm line and continuum survey with comparable spatial resolution is still missing. Aims. The first half of THOR data (l = 14.0 37.9, and l = 47.1 51.2, |b| < 1.25) has been published in our data release 1 paper (Beuther et al. 2016). With this data release 2 paper, we publish all the remaining spectral line data and Stokes I continuum data with high angular resolution (1000–4000) including a new H i dataset for the whole THOR survey region (l = 14.0 67.4 and |b| < 1.25). As we have published the results of OH lines and continuum emission elsewhere, we concentrate on the H i analysis in this paper. Methods. With the Karl G. Jansky Very Large Array (VLA) in C-configuration, we observed a large portion of the first Galactic quadrant achieving an angular resolution of < 40. At L Band, the WIDAR correlator at the VLA was set to cover the 21 cm H i line, four OH transitions, a series of Hn↵ radio recombination lines (RRLs; n = 151 to 186), and eight 128 MHz wide continuum spectral windows (SPWs) simultaneously. Results. We publish all OH and RRL data from the C-configuration observations, and a new H i dataset combining VLA C+D+GBT (VLA D-configuration and GBT data are from the VLA Galactic Plane Survey, Stil et al. 2006) for the whole survey. The H i emission shows clear filamentary substructures at negative velocities with low velocity crowding. The emission at positive velocities is more smeared-out likely due to higher spatial and velocity crowding of structures at the positive velocities. Comparing to the spiral arm model of the Milky Way, the atomic gas follows the Sagittarius and Perseus Arm well but with significant material in the inter-arm regions. With the C-configuration-only H i+continuum data, we produced a H i optical depth map of the THOR areal coverage from 228 absorption spectra with the nearest-neighbor method. With this ⌧ map, we corrected the H i emission for optical depth and the derived column density is 38% higher than the column density with optically thin assumption. The total H i mass with optical depth correction in the survey region is 4.7⇥108 M, 31% more than the mass derived assuming the emission is optically thin. If we apply this 31% correction to the whole Milky Way, the total atomic gas mass would be 9.4–10.5⇥109 M. Comparing the H i with existing CO data, we find a significant increase in the atomic-to-molecular gas ration from the spiral arms to the inter-arm regions. Conclusions. The high sensitivity and resolution THOR H i dataset provides an important new window on the physical and kinematic properties of gas in the inner Galaxy. Although the optical depth we derive is a lower limit, our study shows that the optical depth correction is significant for H i column density and mass estimation. Together with the OH, RRL and continuum emission from the THOR survey, these new H i data provide the basis for high angular-resolution studies of the interstellar medium (ISM) in different phases
    corecore