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Introduction

The EU-ENVIRONMENT project COFIN (ENV4-CT97-0629) is a relatively small project
with two partners only – Risø National Laboratory and Sheffield University – who felt
that the problem of concentration fluctuations had been given too little attention in the
context of practical risk assessment. The main objective was main objective

to develop new models for the effects of random concentration fluctuations in
hazardous gas releases

and the method was to derive empirical relations from existing field data, in particular
those obtained by the Risø Lidar. The purpose was to produce new theory and empirical
relations for enhancement of operational models used for risk analysis.

Concentration fluctuations are usually ignored in risk assessment, probably because
regulators consider currently available models too complex and difficult in application.
It is our impression that consultants agree that a stochastic description could be a useful
supplement, but their clients are reluctant to ask for analyses, which are not required in
the regulation guidelines. The best way to improve the situation is probably to develop
relatively simple model extensions compatible with the current standard.

With these objectives in mind, our main strategy for the COFIN project was to study strategy
existing field data and develop relevant relations by a combination of statistical analyses
and appropriate surface-layer scaling. Our conceptual model for the process is a relatively
narrow plume being swept from side to side by large eddies while mixed by turbulence
comparable to or smaller than the plume dimension. The concentration fluctuations ob-
served at a fixed point is the combined result of internal mixing and plume meandering.
Plume meandering is a relatively slow process and the number of excursions within the
duration of a typical experiment is not high. Therefore, cross-plume profiles of mean con-
centration or other statistics are surprisingly irregular and asymmetric when analysed in
the fixed frame of reference. In contrast, profiles are smooth and reproducible when we
analyse fluctuations in a moving frame of reference following the instantaneous plume
centreline.

Data

Data were selected from field experiments with continuous release of artificial smoke field experiments
from sources near the ground. The experiments were conducted in several campaigns with
similar set up in relatively homogeneous terrains free of obstacles. The measurements
were made by a remote-sensing Lidar, which detects the smoke distribution along a laser
beam. The wind and turbulence were monitored by meteorological equipment near the
release point including at least one sonic-anemometer. The measuring path of the Lidar
was oriented horizontally across the plume at approximately 1.5 m above terrain and the
distances from the source were in the range 100-600 m, see figure 2.

In each measurement cycle the Lidar emits a short laser light pulse and detects the light Lidar
reflected by smoke aerosols. The smoke concentration and distance from the instrument
are deduced from the intensity and time-delay of the backscatter signal. Each Lidar profile
contains 512 measuring range gates and the time response is practically instantaneous.
Due to the dimensions of the light pulse and time response of the detector system, the
virtual observation points have spatial averaging approximately 1.5 m along the laser
beam. In the selected experiments the measuring frequency of the Lidar was 1=5� 1=3

Hz. For some analyses we apply additional data obtained a rebuilt Lidar, which has a
faster measurement frequency, less measurement noise but more spatial averaging. We
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Figure 1. Time series measurements by UVIC sensors on a mast 235m downstream of a
surface source – in the FLADIS experiments.

Figure 2. Top view of the typical setup of a lidar experiment.

also use data from the fast-responding UVIC detectors deployed at similar measurement
positions.

The Lidar data are processed by an algorithm, which compensates for smoke obscura- data processing
tion and directional spreading of the reflected light. This algorithm uses a larger amplifi-
cation and less ideal signal-to-noise ratios for smoke at far distance. The unsteady signal
baseline is corrected by a curve fit through clean-air observation in front of and behind
the plume, by a method which was refined during the COFIN project, see figure 3.

Further signal improvement was obtained by a maximum-entropy-inversion (MEI) noise removal
method, which reduces high-frequency noise while maintaining average and variance.
This method is based on an assumption of uniform statistical properties, which is not
fulfilled for a cross-plume profile. Instead we construct time-series at virtual observa-
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Figure 3. Example of a Lidar profile with and without baseline correction.

Figure 4. An instantaneous concentration profile, together with the same profile after
application of the MEI procedure.

tion points and MEI treat these individually. This is a time consuming task difficult to
automate and not all data were treated this way.

Analyses and models

The probability distribution function (PDF) is an important property of the concentration versatile PDF model
fluctuations. The Beta and generalized Pareto distribution (BGPD) is a very flexible PDF
model, which is constructed as a weighted sum

p (c) = 
f1 (c) + (1� 
) f2 (c) 0 � 
 � 1 (1)

of two components

f1 (c) =
(1�c/cmax)

�
2
�1

�1
�1 > 0; �2 > 0

f2 (c) =
(c/cmax)

�
1 (1�c/cmax)

�
2

cmaxB(1+�1;1+�2)
�1 > �1; �2 > 0

(2)

with the Beta function defined by B (m;n) �
R 1
0
tm�1 (1� t)n�1 dt. The BGPD model

has five independent parameters (
; �1; �2; �1; �2) since the maximum concentration is
determined by cmax = �1�2. It will fit both uni- and bi-modal distributions, see figure 5,
and its approach to the upper limit p (c) ! � (1� c/cmax)

�
for c ! cmax is in agree-

ment with UVIC data.

4 COFIN project



Figure 5. Maximum likelihood fits for the BGPD (solid curve), compared with the cor-
responding histogram, at moving-frame positions x = 0; x = �9m and x = �18m,
for the mad14k data. Also shown are the results of the maximum likelihood fits for the
simpler beta distribution (dashed curve).

Lidar data offers an excellent opportunity to study spatial distribution of the concen- plume centreline
tration fluctuations. An important concept in our analyses is the plume centreline defined
by

yc (t) =
1

m̂1(t)

Z
1

�1

y C (y; t) dy (3)

where we normalize with a ’mass’ integral of the type

m̂n(t) =

+1Z
�1

Cn (y; t) dy (4)

From this we define the moving-frame concentration

Cm (�; t) � C (yc (t) + �; t) (5)

and the time-averaged moving-frame profile hCm (�; t)i. The shape of this profile, as moving-frame profile
well as for equivalent profiles for higher-order statistical moments hC n

m
(�; t)i, is best

described as gaussian near the centreline with exponential tails, see figure 6. Spatial di-
mensions of the moving-frame profiles is measured by

�2
n
�

R +1
�1

hCn

m
(�; t)i �2d�

hm̂n (t)i
(6)

and we find, see figure 7, that these dimensions are interrelated by

�1/�n =(n+ �)/(1 + �) with � ' 2 (7)
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Figure 6. Normalized moment profiles for several ground releases, shown for n = 1::4
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Thus, we may use �1 as a single characteristic length scale, and data shows that this is
proportional to the friction velocity u� and travel time t from the source, with the best
estimate �1 ' 0:75u�t. No dependence on other meteorological parameters, such as
atmospheric stability z=L, was detected.
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lower right corner shows �1=�n vs. n. The thick line is equation 7 with � = 1:88
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Figure 8. Plume width pdf based on all experiments. The line is a log-normal distribution
with b� = 0:32.

The instantaneous plume width is defined by instantaneous plume width

�̂2
n
(t) �

R +1
�1

Cn

m
(�; t) �2d�

m̂n (t)
(8)

and the probability distribution of this is found to be log-normal, see figure 8 . Variation of
the normalizing integral m̂n(t) are modest and this definition is in reasonable agreement
with the previous one



�̂2
n
(t)
�
� �2

n
.

In search for an explanation of the non-gaussian moving-frame profiles we describe non-gaussian profiles
the development of the moving-frame profile by a diffusion equation

dCm (�; t)

dt
=

d

d�
K (�; t)

dCm (�; t)

d�
(9)
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This follows from the assumption of self-similarity and by appropriate scaling the special
diffusivity and moving-frame concentration profiles may be expressed by

K (�; t) = � _�� (�/�) and Cm (�; t) = ��1f (�/�) (10)

and insertion into the above diffusion equation provides the relation

f (s) / exp

2
4�

sZ
0

s0/� (s0) ds0

3
5 with s = �/� (11)

Further assumptions on diffusivities at small and large separations suggest the diffusivity
profile � (s) = 1

4
(1 + 2 jsj) producing a concentration profile

f (s) = 1
2
(1 + 2s) exp (�2s) (12)

which indeed is nearly gaussian for small separations and exponential for large ones. Al-

ternatively we might choose the more flexible formulation � (s) = (��)
�2
q
1 + (�s)

2

which leads to

f (s) = exp
�
��2

�p
1 + �2s2 � 1

��
(13)

where Kn (x) is the modified Bessel function of the second kind and where we set � 2 =

K2

�
�2
� �
�2K1

�
�2
��
�1

in order to match the plume width. This shape is gaussian for
� ! 1, exponential for � ! 0 and in agreement with equation 12 for � � 1. The
method could be used for other dispersion processes than in the selected experiments, e.g.
an elevated plume which obeys different scaling laws. We hope to verify such predictions
by future experiments.

Historically, many tracer experiments have applied arrays of bag samples detecting the time averaging
average concentration over the sample time ts. Defining the normalized concentrationR
c(y; t)dy = 1 we find the time average

�c =
1

ts

t0+tsZ
t0

c (y; t) dt (14)

The meandering plume centreline implies that a plume width based on time-averaged
measurements is wider that the instantaneous width. This is expressed as



�2 (ts)

�
=


�2 (0)

�
+

1

t2
s

tsZ
0

(ts � � )S (�) d� (15)

using a structure function for the centre-line position S (�) =
D
(y (t+ �)� y (t))

2
E
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Figure 9. Plume centre as a function of time. Left: BOREX4c. Right: BOREX17E.

The Langevin process is a suitably simple model for the centreline position plume meander
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dyc
dt

= �
yc
T

+ U � a (s) (16)

with s = tU/� (0) and ha (s0) a (s00)i = �Æ (s0 � s00) where T is a timescale, U is the
plume advection, and a is a random memoryless gaussian acceleration. The variance and
structure function become



y2
c

�
= 1

2
�� (0)UT andS (�) = �� (0)UT [1� exp (��/T )]

Fitting this model to data is complicated by the frequently observed non-stationary plume
meander, which is the fundamental difficulty of fixed-frame analyses, see right-hand
frame of figure 9. With this reservation in mind, we proposeUT/� (0) ' 30 and � ' 0:2.
The Langevin process leads to the time-averaged plume width

�2 (t) = �2 (0) +
�� (0)UT 3

t2

�
1� t/T + 1

2
(t/T )

2 � e�t/T
�

(17)

which is a useful formula when comparing different experiments using varying sample
times. A further consequence of the Langevin-type plume meander model, is that the
probability distribution of centre-line positions at two distinct times becomes joint gaus-
sian with exponentially decaying correlation, i.e.

p (y0
c
; y00

c
) =

1

2� hy2
c
i
�
1� e�2j� j/T

� exp
"
�
(y0

c
)
2
+ (y00

c
)
2 � 2y0

c
y00
c
e�j� j/T

2 hy2
c
i
�
1� e�2j� j/T

�
#

(18)

where we write y0
c
= yc (t) and y00

c
= yc (t+ � ).

We have developed methods for prediction of concentration-fluctuation PDF in a mov- moving-frame PDF
ing frame of reference. For this purpose we apply generic probability models of the type

p (c j� ) = (1� 
 (�)) Æ (c) + 
 (�) pc (c j� ) (19)

where the intermittency 
 (�) is the probability of non-zero concentrations and p c (c j� )
is a conditional PDF. Statistical moments of various statistical orders are linked to the
PDF by

hCn

m
(�; t)i =

1Z
0

p (c j� ) cndc (20)

The spatial variation of these has a universal shape of the moving-frame profiles f (�/� n) =

hCn

m
(�; t)i/hCn

m
(0; t)i and spatial dimensions �n, which we prescribe by equations 12

and 7. With an empirical centre-line PDF of the form

p (c j0) = 4c
Æ
c20 exp [�2c/c0] (21)

and the use of a generating function, we predict a general PDF by

p (c j� ) =
4c exp

�
�2c/c0e2s + 2s (3� �)

�
c20

1 + 2s
�
� � 2 + 2c/c0e

2s
�

1 + 2�s
(22)

where s = j�j/(�1 + ��1) is the dimensionless distance from the centreline. The fluctu-
ation intermittency is interpreted as the zero order statistics


 (�) = (1 + 2 j�j/�0) exp (�2 j�j/�0) (23)

with �0 determined by equation 7. This PDF model is in good agreement with empirical
probability distributions, see figure 10.

An alternative strategy is to derive local PDFs by local statistical moments, e.g. from
the gamma distribution

p (c) = (1� 
) Æ (c) +

cb�1

� (b)ab
exp (�c/a)) hCni = 
an

� (n+ b)

� (b)
(24)

The model coefficients are deduced from statistical moments

b =
2�M3

M3 � 1
a =

M2

1 + b
hCi 
 =

1

ab
hCi (25)
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Figure 10. Conditional moving frame pdfs and cdfs for different values of jyj=� 1. Points
are data and the line is the proposed model.

using dimensionless moment ratios

M2 =



C2
�

hCi2
M3 =



C3
�
hCi

hC2i2
and M4 =



C4
�
hCi

hC3i hC2i
(26)

The shape parameter b of the gamma distribution must be positive, so solutions only exist
for 1 �M3 � 2. Other PDF models, e.g. a clipped Gaussian distribution, impose similar
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restrictions. Furthermore, observed profiles of moment ratios are concave withM 00

n
(O) �

O(0:1). From these conditions we calibrate the parameters (�n; �n) in moving-frame
profiles of the type in equation 13

hCn

m
(�)i = hCn

m
(0)i exp

"
��2

n

 s
1 +

K2 (�2n) �
2

�2
n
K1 (�2n)�

2
n

� 1

!#
(27)

Profile dimensions deduced by this method are in good agreement with equation 7.
Fixed-frame probabilities and statistical moments are predicted by the convolution of fixed-frame PDF

the PDF for the centre-line position and the moving-frame statistics

p (c jy ) =

Z
1

�1

p (yc) pm (c jy � yc )dyc

hCn (y)i =

Z
1

�1

p (yc) hCn

m
(y � yc)idyc (28)

With a gaussian distribution of the centreline position and numerical integration the
fixed-frame distributions of statistical moments follow nearly the same model as moving-
frame distributions, however with wider distributions, smaller centreline values and more
gaussian distributions, i.e. a larger fixed-frame tail parameter �n;f > �n;m. The fixed-
frame moments at the centreline are found analytically for special moving-frame shapes
(�n;m = 0; 1;1 ) and interpolated for the general case. Further conditions on tail be-
haviour and conservation of the moment integral determines the remaining fixed-frame
parameters (�n;f ; �n;f ).
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Figure 11. Generalized distance neighbour functions for n = 1::4.

As a supplement to the moving-frame analyses we propose a generalized distance- distance-neighbour function
neighbour function defined by

Dn (�) �

+1Z
�1

�
C (y; t)Cn (y + �; t)

m̂1(t)m̂n(t)

�
dy (29)

This statistics describes the concentration structure around a randomly chosen plume
particle. Similarly to the moving-frame profiles we define the width of the distance-
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neighbour

s2
n
�

+1Z
�1

Dn (�) �
2d� (30)

and the definitions leads to a nice relation between distance-neighbour and moving-frame
dimensions.

s2
n
=


�̂21
�
+


�̂2
n

�
(31)

We also have the formula
+1Z
�1

D1 (�) �
4d� = 2

+1Z
�1

hCm (�)i �4d�
hm1(t)i

+ 6


�̂4
�

(32)

where the last term is related to the variance of the square of the instantaneous plume
width. Data shows that the shape of the distance-neighbours is exponential, see figure 11
and by the definitions we obtain

Dn (�) =
1

p
2 sn

exp
�
�
p
2j�j/sn

�
(33)

which is equal to D1 (�) = (2�1)
�1

exp(�j�j/�1) for the lowest order.
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Figure 12. Contour plots of Q(y; y 0; 0) made for two experiments. The contour levels are
on a logarithmic scale with five contours per decade.

The time-lagged two-point correlation is defined by two-point correlation

Q (y; y0; � ) � hCm (y; t+ �)Cm (y0; t)i (34)

Data shows that this becomes

Q (y; y0; 0) �
1

2�21
exp

�
�
jy + y0j+ jy � y0j

�1

�
(35)

for zero time lag, see figure 12, which is in accordance with the simple model for the
moving-frame profile in equation 12. The concentrations become independent for larger
time lags

Q (y; y0; � )! hCm (y)i hCm (y0)i for � !1 (36)
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Figure 13.D(0; �) vs � . PORTON data.

and actually this happens very fast, i.e. the in-plume fluctuations have a short mem-
ory, see figure 13. From the two-point correlation we may define a time-lagged distance-
neighbour function

D (�; � ) �

1Z
�1

Q (� + y; y; �) dy (37)

as an extension to the previous definition for D (�) = D (�; 0). From new fast Lidar data
we find an exponential decay of the zero-separation case D (0; �) with a time constant
less than one second. We may also define a similar quantity

" (�; � ) �

1Z
�1

Q (� � y; y; �) dy (38)

and data shows that for zero time lag we may use the separation

Q (y; y0; 0) � 2D (jy � y0j ; 0) " (jy + y0j ; 0) (39)

Simulation tools

The aim of simulation is to produce artificial ’signals’, which might substitute real data
as input to consequence models or simply illustrate the process. For a simulation to be of
interest the statistical properties of the ’signals’ must be realistic, i.e. it should reproduce
as many statistical parameters as possible. Perfect imitation is impossible, although the
available methods may reproduce the PDF of individual time series and second-order
accurate cross-correlations of time series pairs. The statistics of the time-derivatives of
the signals are modelled correctly to the second order.

Simulation of random processes is greatly simplified when the target probability func- Fourier simulation of
gaussian processestions are gaussian. The main advantage is that a linear transformation of a vector y j with

gaussian components will map into another gaussian vector x i = Lijyj , where Lij is the
transformation matrix. If the input variables y j are uncorrelated gaussian deviates, sim-
ulated by the Box-Muller algorithm (Press, Flannery, Teukolsky & Vetterling 1992), the
covariance matrix of the transformed process is K = LLT , where LT is the transposed
of the covariance matrix. Simulation by x i = Lijyj is called Karhunen-Loève expansion.
Proper covariance matrices always non-negative definite and the transformation matrix
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L may be found by Cholesky, or ’square root’, decomposition of the covariance matrix
(Press et al. 1992). Another useful property is that a Fast Fourier Transform (FFT) of
a Gaussian time series maps onto a gaussian spectral distribution, and vice versa. Spec-
tral representations Xi (f) and Xj (f) the time series xi (t) and xj (t) may be modelled
by uncorrelated gaussian input Xi (f) = Lik (f)Yk (f) and transformed into time do-
main by inverse FFT. The starting point for numerical simulation is the cross spectrum
matrix, which is decomposed for every frequency, � ij (f) = L (f)L� (f). In general,
we must use complex algebra since cross-correlation functions may be asymmetric in
time with corresponding complex cross spectra. The spectral matrix will be Hermitian
�ij (f) = ��

ij
(f), and the non-negative definiteness allows decomposition by a complex

version of the Cholesky’s algorithm.
Many techniques for simulation of non-gaussian variable applies a memoryless trans- non-gaussian simulation by

iterationlation, in which the individual series xi (t) is transformed by the monotonic increasing
function ci (t) = gi [xi (t)] = F�1

Ci
[�Xi

[xi (t)]], where FCi
is the marginal distribution

of ci (t) and �Xi
is the distribution of the preliminary series. The difficulty of this proce-

dure is that the transformation distorts the spectral distribution. The first method tested in
COFIN applied an iteration, which alternately corrects the PDF and the spectral distribu-
tion of the series. In each iteration step, we find the distribution of the preliminary series
= F�1

Ci
[�Xi

[xi (t)]] by the QUICKSORT algorithm. The spectral corrections are made
by

�i+1 (f) =
�i (f)

�map
i

(f)
�T
i
(f) (40)

where �i;k (f) and ~�i;k (f) are the power spectra of the preliminary series and corre-
sponding probability corrected one and � i;T (f) is the target power spectrum. The it-
eration is stopped when corrections are sufficiently small. The method also applies for
uniform two- or multidimensional fields using corresponding versions of the FFT algo-
rithm. Useful simulations were obtained by relaxation of the requirement of uniformity. A
two-dimensional simulation was made in domain of time and cross-plume position with
the probability correction depending on cross-plume position. From a theoretical view-
point this method is inaccurate, since the spectral distortion by the probability correction
vary with plume position whereas spectral corrections are universal.
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Figure 14. Time series simulated by the correlation-distortion method and imitating the
FLADIS measurements shown in figure 1.

Correlation-distortion is a simulation method in which the spectral distributions used correlation-distortion
for Fourier simulation are modified such that the subsequent probability correction will
results in the target spectra. This is efficient since no iteration is required. Gioffrè, Gusella
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& Grigoriu (2000) show that for a given time lag � the cross correlation function of
the two translated processes �cicj (�) relates to the cross correlation of the initial series
�xixj (�) by a double integral involving the translation functions.

�Ck
�Cl

�kl (�) = (41)

1Z
�1

1Z
�1

[gk fxkg � �k] [gl fxlg � �l]'2D [xk; xl j�kl (�) ] dxkdxl

Here �k = E [ck] is the mean of the non-gaussian process and '2D is the joint gaussian
distribution. The task is to find correlation functions for the gaussian processes � xixj (�),
which will reproduces the target correlations for the non-gaussian processes � cicj (�).
Numerical evaluation of the double integral is computationally expensive and a solution
is needed for all signal pairs. To speed up the calculations we apply a Taylor expansion

�k�l�kl (�) �
NX
n=1

aknaln
n!

�n
kl
(�) (42)

with coefficients akn =
R
[gk fxg � �k]Hen (x)� (x) dx calculated by Hermite polyno-

mials Hen (x) � (�1)nDn [' (x)]/' (x) defined by the normal distribution ' (x). The
cross-correlations of all combinations of gaussian processes �xixj (�) are transformed
to the frequency-dependent cross-spectral matrix �xixj (�) and used for Fourier simu-
lation of gaussian series, which are translated to non-gaussian ones c i (t) = gi [xi (t)].
Unfortunately, lack of precision in the Taylor expansion and Fourier transformation will
sometimes corrupt the positive definiteness of the translated correlation matrices. To over-
come this problem we decompose spectral matrices by an alternative eigensystem method
and adopt a special correction, which recovers positive definiteness of the correlation ma-
trix with minimum adjustment of cross correlations and conservation of autocorrelations.
Figure 14 shows simulations by this method.

Figure 15. Snapshot of a plume-meander simulation.

A random 2-D turbulence-like velocity field is simulated by a single length constant plume meander
and an eddy lifetime modelled by the wave number T / jkj�2/3 . Gaussian puffs are re-
leased from the source and tracked in the time-varying flow field. The puff grows linearly
in time until they reach a predefined size after which they split into three smaller ones
with their masses and weighs designed for a match with the first four spatial moments
of the mother puff. The total concentration field is determined as the sum of all traces
determined as cubic-spline interpolations through series of gaussian puffs. The moments
of the composite concentration field is measured as sums of the well-known moments
of gaussian distributions, and from this we determine the centre-line position and plume
width as function of time and downwind position, see figure 15.

Sometimes we only need to simulate plume meander at a single downwind position,
and for these cases it is much simple to use the Langevin equation 16, which implies that
the plume position after time step �t has a normal distribution

p (yc (t+�t) jyc (t) ) 2 N
�
�yc (t) ;

�
1� �2

� 

y2
c

��
(43)
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depending on the total variance


y2
c

�
and the exponentially decaying ’memory’ � =

exp (��t/T ) of the temporal position yc (t).
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Figure 16. Structure of the COFINBOX model.

Demonstration software

It was decided to develop a computer program COFINBOX, which demonstrates that heavy-gas model
models for concentration fluctuations might be used as an add-on module for traditional
dispersion models. For this purpose we implement a heavy-gas box model, which is a
model type often used in risk assessment. The program is modular with objects for: me-
teorological conditions; phase-transition and density calculations for two-phase mixtures
with aerosols in homogeneous equilibrium; simple source models determining the release
conditions; main parameters used for integration (enthalpy, width, mass, momentum and
position); auxiliary parameters derived by the main parameters (concentration, temper-
ature, density, turbulence velocity scales, etc.); fourth-order Runge-Kutta integration of
ordinary differential equations for main parameters with adaptive time steps; smooth in-
terpolation between main parameters. Mixing is predicted by a heavy-gas entrainment
function based on estimates for in-plume friction velocity and heat flux from the ground,
with a smooth transition from heavy-gas to passive dispersion. The model structure is
shown in figure 16.

These calculations are standard in box models for heavy-gas dispersion. The objects for concentration fluctuations
concentration fluctuations are: probability and simulation of the plume centreline position
using a Langevin equation; prediction of moving-frame profiles for various statistical mo-
ments; and simulation of concentration fluctuation. The simulation is based on iteration
in a two-dimensional time/cross-plume direction domain using a simple model for the
spectral structure. The ideal simulation technique would be distortion-correlation of cou-
pled time series, but we have not yet found a model for spectral coherence of fluctuations
in a meandering plume observed on a fixed frame of reference.

The computationally efficient Langevin-equation method for local plume meander sub- kinematic simulation
stitutes an elaborated kinematic simulation. Although no longer needed for simulation of
concentration fluctuations, the kinematic simulation is maintained as an illustration of
the plume meander process. This simulation is driven by a random two-dimensional hor-
izontal velocity field with a wave-number dependent memory making lifetimes of large
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Figure 17. Screen dumps from the COFINBOX user interface. On the left-hand side: 1)
Meteorology, substance properties and source models, 2) results of the box-model calcu-
lation, 3) contour plots. Modules for concentration fluctuations are shown on the right-
hand side: 1) profiles of statistical moments and probability distributions, 2) Simulated
concentration fluctuations, 3) Simulated plume meander.

eddies longer that those of small eddies. At each time step a gaussian puff is released
from the source. The time-varying stochastic wind field transports the puff while its di-
mension increases and it is split into smaller ones when it has grown to a predefined size.
Finally, instantaneous concentration fields are interpreted as the superposition of all puffs
in the domain using cubic-spline interpolation along traces of puffs. Spatial moments of
the concentration field are calculated as a function of distance from the source, and this
leads to time series for the centre-line position and plume width.
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Figure 17 shows the COFINBOX user interface.

Dissemination of results

In addition to the present report the project published: five journal papers (Munro, Chatwin publications
& Mole 2001b, Chatwin & Mole 2000, Mole 2001, Chatwin 2001, Munro, Chatwin
& Mole 2001a); four encyclopedia articles (Nielsen 2001, Nielsen 2002, Chatwin &
Sullivan 2001, Chatwin & Sullivan 2002); a Ph.D. thesis (Munro 2001); a data report
(Jørgensen & Nielsen 1999); and eighteen conference papers, see homepage. The project
has material for more publications, where the sponsorship will be acknowledged.

A workshop called Fluctuations in Atmospheric Dispersion and their Applications workshop
(FADA), was arranged at the University of Sheffield, 9-12 September 2000. The FADA
workshop had approximately 40 participants from four continents, with three panel dis-
cussions and 25 presentations, including eight presentations by COFIN participants. Po-
tential model were invited to project meetings and to the FADA workshop. User needs
were discussed Shell Research (UK), Health and Safety Executive (UK) and with sci-
entific collaborators from the University of Western Ontario (Canada); the University collaboration
of Alberta (Canada); Mitsubishi Heavy Industries (Japan); Defence Evaluation and Re-
search Agency (UK) and Meteorological Office (UK). Scientist from these institutions
visited Risø and Sheffield University on several occasions.

The project homepage http://www.risoe.dk/vea-atu/cofin was active from the start of homepage
the project and it contains links and references to all management and scientific docu-
ments. The user-friendly COFINBOX program is available from here.

Contact

Participants of the COFIN project are reached at the following coordinates: scientific staff

Scientist Tel. No. E-mail
Philip Chatwin +44.114.2223740 P.Chatwin@sheffield.ac.uk
Hans E. Jørgensen +45.46.775034 Hans.E.Joergensen@risoe.dk
Nils Mole +44.114.2223772 N.Mole@sheffield.ac.uk
Rick Munro +44.122.3337846 R.J.Munro@damtp.cam.ac.uk
Morten Nielsen +45.46.775022 N.M.Nielsen @risoe.dk
Søren Ott +45.46.775111 Soeren.Ott @risoe.dk

and the addresses are

Coordinator Contractor
Risø National Laboratory Sheffield University
Wind Energy Department School of Mathematics and Statistics
Attn: Morten Nielsen Attn: Prof. P.C. Chatwin
Building 125 The Hicks Building
P.O.Box 49 P.O.Box 597
DK-4000 Roskilde Sheffield S10 2UN
Denmark Great Britain
Fax:+45.46.775970 Fax: +44.114.2223739
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The COFIN project collaborated with parallel research at collaboration

� The University of Western Ontario, London, Canada (Canada)

� The University of Alberta (Canada)

� Mitsubishi Heavy Industries (Japan)

� Defence Evaluation and Research Agency (UK)

� Meteorological Office (UK)

Scientist from these institutes visited the COFIN partners on several occasions and par-
ticipated in the FADA workshop.
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