10,930 research outputs found
Quantum interference and entanglement induced by multiple scattering of light
We report on the effects of quantum interference induced by transmission of
an arbitrary number of optical quantum states through a multiple scattering
medium. We identify the role of quantum interference on the photon correlations
and the degree of continuous variable entanglement between two output modes. It
is shown that the effect of quantum interference survives averaging over all
ensembles of disorder and manifests itself as increased photon correlations
giving rise to photon anti-bunching. Finally, the existence of continuous
variable entanglement correlations in a volume speckle pattern is predicted.
Our results suggest that multiple scattering provides a promising way of
coherently interfering many independent quantum states of light of potential
use in quantum information processing.Comment: 5 pages including 4 figure
Markov Decision Processes with Average-Value-at-Risk criteria
We investigate the problem of minimizing the Average-Value-at-Risk (AV aRr) of the discounted cost over a finite and an infinite horizon which is generated by a Markov Decision Process (MDP). We show that this problem can be reduced to an ordinary MDP with extended state space and give conditions under which an optimal policy exists. We also give a time-consistent interpretation of the AV aRr . At the end we consider a numerical example which is a simple repeated casino game. It is used to discuss the influence of the risk aversion parameter r of the AV aRr-criterion
Nodal-to-nodeless superconducting order parameter in LaFeAsPO synthesized under high pressure
Similar to chemical doping, pressure produces and stabilizes new phases of
known materials, whose properties may differ greatly from those of their
standard counterparts. Here, by considering a series of LaFeAsPO
iron-pnictides synthesized under high-pressure high-temperature conditions, we
investigate the simultaneous effects of pressure and isoelectronic doping in
the 1111 family. Results of numerous macro- and microscopic technique
measurements, unambiguously show a radically different phase diagram for the
pressure-grown materials, characterized by the lack of magnetic order and the
persistence of superconductivity across the whole doping
range. This unexpected scenario is accompanied by a branching in the electronic
properties across , involving both the normal and superconducting
phases. Most notably, the superconducting order parameter evolves from nodal
(for ) to nodeless (for ), in clear contrast to other 1111
and 122 iron-based materials grown under ambient-pressure conditions.Comment: 9 pages, 7 figures, Suppl. materia
Nonlinear Dynamics of a Bose-Einstein Condensate in a Magnetic Waveguide
We have studied the internal and external dynamics of a Bose-Einstein
condensate in an anharmonic magnetic waveguide. An oscillating condensate
experiences a strong coupling between the center of mass motion and the
internal collective modes. Due to the anharmonicity of the magnetic potential,
not only the center of mass motion shows harmonic frequency generation, but
also the internal dynamics exhibit nonlinear frequency mixing. We describe the
data with a theoretical model to high accuracy. For strong excitations we test
the experimental data for indications of a chaotic behavior.Comment: 4 pages, 4 figure
An infrared imaging search for low-mass companions to members of the young nearby beta Pic and Tucana/Horologium associations
We present deep high dynamic range infrared images of young nearby stars in
the Tucana/Horologium and beta Pic associations, all ~ 10 to 35 Myrs young and
at ~10 to 60 pc distance. Such young nearby stars are well-suited for direct
imaging searches for brown dwarf and even planetary companions, because young
sub-stellar objects are still self-luminous due to contraction and accretion.
We performed our observations at the ESO 3.5m NTT with the normal infrared
imaging detector SofI and the MPE speckle camera Sharp-I. Three arc sec north
of GSC 8047-0232 in Horologium a promising brown dwarf companion candidate is
detected, which needs to be confirmed by proper motion and/or spectroscopy.
Several other faint companion candidates are already rejected by second epoch
imaging. Among 21 stars observed in Tucana/Horologium, there are not more than
one to five brown dwarf companions outside of 75 AU (1.5" at 50 pc); most
certainly only < 5 % of the Tuc/HorA stars have brown dwarf companions (13 to
78 Jupiter masses) outside of 75 AU. For the first time, we can report an upper
limit for the frequency of massive planets (~ 10 M_jup) at wide separations (~
100 AU) using a meaningfull and homogeneous sample: Of 11 stars observed
sufficiently deep in beta Pic (12 Myrs), not more than one has a massive planet
outside of ~ 100 AU, i.e. massive planets at large separations are rare (< 9
%).Comment: Astronomische Nachrichten, in pres
The molecular environment of massive star forming cores associated with Class II methanol maser emission
Methanol maser emission has proven to be an excellent signpost of regions
undergoing massive star formation (MSF). To investigate their role as an
evolutionary tracer, we have recently completed a large observing program with
the ATCA to derive the dynamical and physical properties of molecular/ionised
gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission.
We find that the molecular gas in many of these regions breaks up into multiple
sub-clumps which we separate into groups based on their association
with/without methanol maser and cm continuum emission. The temperature and
dynamic state of the molecular gas is markedly different between the groups.
Based on these differences, we attempt to assess the evolutionary state of the
cores in the groups and thus investigate the role of class II methanol masers
as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding
- …