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Abstract. P We investigate the problem of minimizing the Average-Value-at-Risk (AV aRτ )
of the discounted cost over a finite and an infinite horizon which is generated by a Markov
Decision Process (MDP). We show that this problem can be reduced to an ordinary MDP with
extended state space and give conditions under which an optimal policy exists. We also give
a time-consistent interpretation of the AV aRτ . At the end we consider a numerical example
which is a simple repeated casino game. It is used to discuss the influence of the risk aversion
parameter τ of the AV aRτ -criterion.
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1. Introduction

Risk-sensitive optimality criteria for Markov Decision Processes (MDPs) have been considered
by various authors over the years. In contrast to risk neutral optimality criteria which simply
minimize expected discounted cost, risk-sensitive criteria often lead to non-standard MDPs which
cannot be solved in a straightforward way by using the Bellman equation. This property is
often called time-inconsistency. For example Howard & Matheson (1972) introduced the notion
of risk-sensitive MDPs by using an exponential utility function. Jaquette (1973) considers
moments of total discounted cost as an optimality criterion. Later e.g. Wu & Lin (1999)
investigated the target level criterion where the aim is to maximize the probability that the total
discounted reward exceeds a given target value. The related target hitting criterion is studied
in Boda et al. (2004) where the aim is to minimize the probability that the total discounted
reward does not exceed a given target value. A quite general problem is investigated in Collins
& McNamara (1998). There the authors deal with a finite horizon problem which looks like
an MDP, however the classical terminal reward is replaced by a strictly concave functional of
the terminal distribution. Other probabilistic criteria, mostly in combination with long-run
performance measures, can be found in the survey of White (1988).

Another quite popular risk-sensitive criterion is the mean-variance criterion, where the aim
is to minimize the variance, given the expected reward exceeds a certain target. Since it is
not possible to write down a straightforward Bellman equation it took some time until Li & Ng
(2000) managed to solve these kind of problems in a multiperiod setting using MDP methods. In
the last decade risk measures have become popular and the simple variance has been replaced by
more complicated risk measures like Value-at-Risk (V aRτ ) or Average-Value-at-Risk (AV aRτ ).
Clearly when risk measures are used as optimization criteria, we cannot expect multiperiod
problems to become time-consistent. In Bäuerle & Mundt (2009) a mean-AV aRτ problem has
been solved for an investment problem in a binomial financial market.
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Some authors now tackled the problem of formulating time-consistent risk-sensitive multi-
period optimization problems. For example in Boda & Filar (2006) a time-consistent AV aRτ -
problem has been given by restricting the class of admissible policies. Björk & Murgoci (2010)
tackle the general problem of defining time-consistent controls using game theoretic considera-
tions. A different notion of time-consistency has been discussed in Shapiro (2009). He calls a
policy time-consistent if the current optimal action does not depend on paths which are known
cannot happen in the future. In Shapiro (2009) it is shown that the AV aRτ is not time-consistent
w.r.t. this definition but an alternative formulation of a time-consistent criterion is given. Fur-
ther time-consistency considerations for risk measures can e.g. be found in Artzner et al. (2007)
or Bion-Nadal (2008).

In this paper we investigate the problem of minimizing the AV aRτ of the discounted cost over
a finite and an infinite horizon which is generated by a Markov Decision Process. We show that
this problem can be reduced to an ordinary MDP with extended state space and give conditions
under which an optimal policy exists. In particular it is seen that the optimal policy depends on
the history only through a certain kind of ‘sufficient statistic’. In the case of an infinite horizon
we show that the minimal value can be characterized as the unique fixed point of a minimal
cost operator. Further we give a time-consistent interpretation of the AV aRτ . At the end we
also consider a numerical example which is a simple repeated casino game. It is used to discuss
the influence of the risk aversion parameter τ of the AV aRτ . For τ → 0 the AV aRτ coincides
with the risk neutral optimization problem and for τ → 1 it coincides with the Worst-Case risk
measure. We see that with increasing τ the distribution of the final capital narrows and the
probability of getting ruined is decreasing.

The paper is organized as follows: In Section 2 we explain the joint state-cost process and
the admissible policies. In Section 3 we solve the finite horizon AV aRτ problem and give a
time-consistent interpretation. Next, in Section 4 we consider and solve the infinite horizon
problem and Section 5 contains the numerical example.

2. A Markov Decision Process with Average-Value-at-Risk Criteria

We suppose that a controlled Markov state process (Xn) in discrete time is given with values in
a Borel set E, together with a non-negative cost process (Cn). All random variables are defined
on a common probability space (Ω,F ,P). The evolution of the system is as follows: suppose
that we are in state Xn = x at time n. Then we are allowed to choose an action a from an
action space A which is an arbitrary Borel space. In general we assume that not all actions
from the set A are admissible. We denote by D ⊂ E × A, the set of all admissible state-action
combinations. The set D(x) := {a ∈ A : (x, a) ∈ D} gives the admissible actions in state x for
all states x ∈ E. When we choose the action a ∈ D(x) at time n, a random cost Cn ≥ 0 is
incurred and a transition to the next state Xn+1 takes place. The distribution of Cn and Xn+1

is given by a transition kernel Q (see below). When we denote by An the (random) action which
is chosen at time n, then we assume that An is Fn = σ(X0, A0, C0, . . . , Xn)-measurable, i.e. at
time n we are allowed to use the complete history of the state process for our decision. Thus we
introduce recursively the sets of histories:

H0 := E, Hk+1 := Hk ×A× R× E

where hk = (x0, a0, c0, x1, . . . , ak−1, ck−1, xk) ∈ Hk gives a history up to time k. A history-
dependent policy π = (gk)k∈N0 is given by a sequence of mappings gk : Hk → A such that
gk(hk) ∈ D(xk). We denote the set of all such policies by Π. A policy π ∈ Π induces a
probability measure Pπ on (Ω,F). We suppose that there is a joint (stationary) transition
kernel Q from E ×A to E × R such that

Pπ(Xn+1 ∈ Bx, Cn ∈ Bc | X0, g0(X0), C0, . . . , Xn, gn(X0, A0, C0, . . . , Xn))

= Pπ(Xn+1 ∈ Bx, Cn ∈ Bc | Xn, gn(X0, A0, C0, . . . , Xn))

= Q(Bx ×Bc | Xn, gn(X0, A0, C0, . . . , Xn))
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for measurable sets Bx ⊂ E and Bc ⊂ R. There is a discount factor β ∈ [0, 1] and we will either
consider a finite planning horizon N ∈ N0 or an infinite planning horizon. Thus we will either
consider the cost

CN :=
N∑
k=0

βkCk or C∞ :=
∞∑
k=0

βkCk.

We will always assume that the random variables Ck are non-negative and bounded from above
by a constant C̄. Instead of minimizing the expected cost we will now use the non-standard
criterion of minimizing the so-called Average-Value-at-Risk which is defined as follows (note that
we assume here that large values of X are bad and small values of X are good):

Definition 2.1. Let X ∈ L1(Ω,F ,P) be a real-valued random variable and let τ ∈ (0, 1).

a) The Value-at-Risk of X at level τ , denoted by V aRτ (X) is defined by

V aRτ (X) = inf{x ∈ R : P(X ≤ x) ≥ τ}.

b) The Average-Value-at-Risk of X at level τ , denoted by AV aRτ (X) is defined by

AV aRτ (X) =
1

1− τ

∫ 1

τ
V aRt(X)dt.

Note that, if X has a continuous distribution, then the AV aRτ (X) can be written in the more
intuitive form:

AV aRτ (X) = E[X|X ≥ V aRτ (X)],

see e.g. Acerbi & Tasche (2002). The aim now is to find for fixed τ ∈ (0, 1):

inf
π∈Π

AV aRπτ (CN |X0 = x), (2.1)

inf
π∈Π

AV aRπτ (C∞|X0 = x), (2.2)

where AV aRπτ indicates that the AV aRτ is taken w.r.t. the probability measure Pπ. A policy
π∗ is called optimal for the finite horizon problem if

inf
π∈Π

AV aRπτ (CN |X0 = x) = AV aRπ
∗
τ (CN |X0 = x)

and a policy π∗ is called optimal for the infinite horizon problem if

inf
π∈Π

AV aRπτ (C∞|X0 = x) = AV aRπ
∗
τ (C∞|X0 = x).

Note that this problem is no longer a standard Markov Decision Problem since the Average-
Value-at-Risk is a convex risk measure. However, if we let τ → 0 then we obtain the usual
expectation, i.e.

lim
τ→0

AV aRπτ (CN |X0 = x) = Eπx[CN ]

where Eπx is the expectation with respect to the probability measure Pπx which is induced by
policy π and conditioned on X0 = x. On the other hand, if we let τ → 1, then we obtain in the
limit the Worst-Case risk measure which is defined by

WC(CN ) := sup
ω
CN (ω).

Hence the parameter τ can be seen as a kind of degree of risk aversion. For a discussion of the
task of minimizing the Average-Value-at-Risk of the average cost lim supN→∞

1
N+1

∑N
k=0Ck, see

Ott (2010), Chapter 8.
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3. Solution of the finite Horizon Problem

For the solution of the problem it is important to note that the Average-Value-at-Risk can
be represented as the solution of a convex optimization problem. More precisely, the following
lemma is given in Rockafellar & Uryasev (2002).

Lemma 3.1. Let X ∈ L1(Ω,F ,P) be a real-valued random variable and let τ ∈ (0, 1). Then it
holds:

AV aRτ (X) = min
s∈R

{
s+

1

1− τ
E[(X − s)+]

}
.

and the minimum-point is given by s∗ = V aRτ (X).

Hence we obtain for the problem with finite time horizon:

inf
π∈Π

AV aRπτ (CN |X0 = x) = inf
π∈Π

inf
s∈R

{
s+

1

1− τ
Eπx[(CN − s)+]

}
= inf

s∈R
inf
π∈Π

{
s+

1

1− τ
Eπx[(CN − s)+]

}
= inf

s∈R

{
s+

1

1− τ
inf
π∈Π

Eπx[(CN − s)+]
}
.

In what follows we will investigate the inner optimization problem and show that it can be
solved with the help of a suitably defined Markov Decision Problem. For this purpose let us
denote for n = 0, 1, . . . , N

wnπ(x, s) := Eπx[(Cn − s)+], x ∈ E, s ∈ R, π ∈ Π,

wn(x, s) := inf
π∈Π

wnπ(x, s), x ∈ E, s ∈ R. (3.1)

We consider a Markov Decision Model which is given by a 2-dimensional state space Ẽ := E×
R, action space A and admissible actions inD. The interpretation of the second component of the
state (x, s) ∈ Ẽ will become clear later. It captures the relevant information of the history of the
process (see Remark 3.3). Further, there are disturbance variables Zn = (Z1

n, Z
2
n) = (Xn, Cn−1)

with values in E×R+ which influence the transition. If the state of the Markov Decision Process
is (x, s) at time n and action a is chosen, then the distribution of Zn+1 is given by the transition

kernel Q(· | x, a). The transition function F : Ẽ × A× E × R+ → Ẽ which determines the new
state, is given by

F
(
(x, s), a, (z1, z2)

)
=
(
z1,

s− z2

β

)
.

The first component of the right-hand side is simply the new state of our original state process
and the necessary information update takes place in the second component. There is no running
cost and the terminal cost function is given by V−1π(x, s) := V−1(x, s) := s−. We consider

here decision rules f : Ẽ → A such that f(x, s) ∈ D(x) and denote by ΠM the set of Markov
policies σ = (f0, f1, . . .) where fn are decision rules. Note that ‘Markov’ refers here to the
fact that the decision at time n depends only on x and s. For convenience we denote for
v ∈M(Ẽ) := {v : Ẽ → R+ : v is measurable } the operators

Lv(x, s, a) := β

∫
v
(
x′,

s− c
β

)
Q
(
dx′ × dc|x, a

)
, (x, s) ∈ Ẽ, a ∈ D(x)

and

Tfv(x, s) := β

∫
v
(
x′,

s− c
β

)
Q
(
dx′ × dc|x, f(x, s)

)
, (x, s) ∈ Ẽ.

The minimal cost operator of this Markov Decision Model is given by

Tv(x, s) = inf
a∈D(x)

Lv(x, s, a).
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For a policy σ = (f0, f1, f2, . . .) ∈ ΠM we will denote by ~σ = (f1, f2, . . .) the shifted policy. We
define for σ ∈ ΠM and n = −1, 0, 1, . . . N :

Vn+1σ := Tf0Vn~σ,

Vn+1 := inf
σ
Vn+1σ = TVn.

A decision rule f∗n with the property that Vn = Tf∗nVn−1 is called minimizer of Vn. Next note

that we have ΠM ⊂ Π in the following sense: For every σ = (f0, f1, . . .) ∈ ΠM we find a
π = (g0, g1, . . .) ∈ Π such that (the variable s is considered as a global variable)

g0(x0) := f0(x0, s)

g1(x0, a0, c0, x1) := f1

(
x1,

s− c0

β

)
... :=

...

With this interpretation wnσ is also defined for σ ∈ ΠM . Note that a policy σ = (f0, f1, . . .) ∈ ΠM

also depends on the history of our process, however in a weak sense. The only necessary in-
formation at time n of the history hn = (x0, a0, c0, x1, . . . , an−1, cn−1, xn) is xn and the value
s−c0
βn −

c1
βn−1−. . .− cn−1

β . Also note that Π is strictly larger than ΠM : There are history-dependent

policies π which cannot be represented as a Markov policy σ ∈ ΠM . However, it will be shown
in Theorem 3.2 that indeed the optimal policy π∗ of problem (3.1) (if it exists) can be found
among the smaller class ΠM .

The connection of the MDP to the optimization problem in (3.1) is stated in the next theorem.

Theorem 3.2. It holds for n = 0, 1, . . . , N that

a) wnσ = Vnσ for σ ∈ ΠM .
b) wn = Vn.

If there exist minimizers f∗n of Vn on all stages, then the Markov policy σ∗ = (f∗N , . . . , f
∗
0 ) is

optimal for problem (3.1).

Proof. We first prove that wnσ = Vnσ for all σ ∈ ΠM . This is done by induction on n. For n = 0
we obtain

V0σ(x, s) = Tf0V−1(x, s)

= β

∫
V−1

(
x′,

s− c
β

)
Q
(
dx′ × dc|x, f0(x, s)

)
= β

∫ (s− c
β

)−Q (dx′ × dc|x, f0(x, s)
)

=

∫
(c− s)+ Q

(
dx′ × dc|x, f0(x, s)

)
= Eπx[(C0 − s)+] = w0σ(x, s).

Next we assume that the statement is true for n and show that it also holds for n+1. We obtain

Vn+1σ(x, s) = Tf0Vn~σ(x, s)

= β

∫
Vn~σ
(
x′,

s− c
β

)
Q
(
dx′ × dc|x, f0(x, s)

)
= β

∫
E~σx′
[(
Cn − s− c

β

)+]Q (dx′ × dc|x, f0(x, s)
)

=

∫
E~σx′
[(
c+ βCn − s

)+]Q (dx′ × dc|x, f0(x, s)
)

= Eσx[(Cn+1 − s)+] = wn+1σ(x, s).

Histories of the Markov Decision Process h̃n = (x0, s0, a0, c0, x1, s1, a1, . . . , xn, sn) contain the

history hn = (x0, a0, c0, x1, a1, . . . , xn, ). We denote by Π̃ the history dependent policies of the
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Markov Decision Process. Now it is well-known (see e.g. Bäuerle & Rieder (2011) Theorem
2.2.3) that

inf
σ∈ΠM

Vnσ(x, s) = inf
π̃∈Π̃

Vnπ̃(x, s).

Thus we obtain by part a)

inf
σ∈ΠM

wnσ ≥ inf
π∈Π

wnπ ≥ inf
π̃∈Π̃

Vnπ̃ = inf
σ∈ΠM

Vnσ = inf
σ∈ΠM

wnσ

and equality holds which implies the remaining statements. �

Remark 3.3. Note that the optimal policy π∗ (if it exists) is Markov. The term ‘Markov’ refers
here to the two-dimensional Markov Decision Process which consists of the system state and
the quantity s which is the current threshold beyond which costs matter, i.e. the decision at
time point n depends only on the system state at time n and sn. Recall that sn is updated in a
transition step by sn+1 = sn−cn

β . The quantity sn thus contains the information of the history

which is necessary to take a decision and hence can be seen as a ‘sufficient statistic’.

Next we impose some assumptions on the model data of the general Markov Decision Pro-
cess which guarantee that an optimal policy for problem (3.1) exists. Besides the fact that the
non-negative cost Ck is bounded from above by a constant C̄ we impose the following assumption.

Assumption (C):

(i) D(x) is compact for all x ∈ E,
(ii) x 7→ D(x) is upper semicontinuous, i.e. it has the following property for all x ∈ E: If

xn → x and an ∈ D(xn) for all n ∈ N, then (an) has an accumulation point in D(x).
(iii) (x, a) 7→

∫
v
(
x′, s−cβ

)
Q
(
dx′×dc|x, a

)
is lower semicontinuous for all lower semicontinuous

functions v ≥ 0.

Then the next theorem can be shown.

Theorem 3.4. Under Assumption (C) there exists an optimal Markov policy σ∗ for problem
(3.1).

Proof. In view of Theorem 3.2 we have to show that there exist minimizers for the value functions
Vn. But this follows directly from our assumptions and Theorem 2.4.6 in Bäuerle & Rieder
(2011). Note that since the cost variables are non-negative we can use b(x, s) ≡ 1 as a lower
bounding function. �

It is now possible to show some more properties of the value functions Vn. For this purpose,
let us define the set

M :=
{
v : Ẽ → R+ | v(x, ·) is non-increasing for x ∈ E; |v(x, s)− v(x, t)| ≤ |s− t|;

∃ c̃ : E → R s.t. v(x, s) = c̃(x)− s, for s < 0 and v(x, s) = 0 for s large enough
}
.

It is possible to show the following result.

Theorem 3.5. It holds that:

a) T : M→M.
b) wN ∈M.

Proof. We first prove part a) by showing that if v ∈ M, the function Tv has the four stated
properties. Recall that for v ∈M we have

Tv(x, s) = β inf
a∈D(x)

∫
v
(
x′,

s− c
β

)
Q(dx′ × dc|x, a).
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1

2 3 4

1, 0.5, 0 1, 0.5, 2
2, 1, 0.5

1, 1, 0 1, 1, 01, 1, 0

Figure 1. MDP model of Example 3.7.

This definition directly implies that Tv(x, ·) is non-increasing if v(x, ·) is non-increasing. The
Lipschitz property is satisfied since for s, t ∈ R and v ∈M:

|Tv(x, s)− Tv(x, t)| ≤ β sup
a∈D(x)

∫ ∣∣∣v(x′, s− c
β

)
− v
(
x′,

t− c
β

)∣∣∣Q(dx′ × dc|x, a)

≤ β sup
a∈D(x)

∫ ∣∣∣s− c
β
− t− c

β

∣∣∣Q(dx′ × dc|x, a) = |s− t|.

For the next property note that if s < 0, then s−c
β < 0. This implies that for s < 0:

Tv(x, s) = β inf
a∈D(x)

∫ (
c̃(x′)− s− c

β

)
Q(dx′ × dc|x, a)

= inf
a∈D(x)

∫
(βc̃(x′) + c)Q(dx′ × dc|x, a)− s.

The last property is obvious since the cost are assumed to be bounded.
Now for part b) note that by Theorem 3.2 and the fact that Vn+1 = TVn (see e.g. Bertsekas

& Shreve (1978)) it is enough to show that V−1 ∈ M. Since V−1(x, s) = s− this can be seen
directly from the definition of M. �

With the help of these properties it follows now that there is a ‘Markov’ optimal policy for
the AV aRτ -problem with finite horizon. Consider the problem

inf
s∈R

(
s+

1

1− τ
wN (x, s)

)
. (3.2)

We obtain our next statement.

Theorem 3.6. There exists a solution s∗ of problem (3.2) and the optimal policy of problem
(3.1) with initial state (x, s∗) solves problem (2.1).

Proof. It is not difficult to see from Theorem 3.5 part b) and the definition of the set M that
for all x ∈ E:

lim
s→∞

(
s+

1

1− τ
wN (x, s)

)
=∞ and lim

s→−∞

(
s+

1

1− τ
wN (x, s)

)
=∞.

Hence there exists a number R(x) ∈ R such that K := {s ∈ R : s + 1
1−τwN (x, s) ≤ R(x)} 6= ∅.

Since s 7→ wN (x, s) is continuous (see Theorem 3.5 part b)) it follows that K is compact and
problem (3.2) has a solution. The remaining statement follows from the considerations at the
beginning of this section. �

Example 3.7. Here, we briefly illustrate that a general AV aRτ -optimal policy might not be
V aRτ -optimal. The Markov Decision Model is the following: S = {1, 2, 3, 4}, A = {1, 2},
D(1) = A, D(2) = D(3) = D(4) = {1}. The cost Cn can take the possible values {0, 0.5, 2} and
the transition kernel is given by

Q({2} × {0}|1, 1) = 0.5, Q({4} × {2}|1, 1) = 0.5, Q({3} × {0.5}|1, 2) = 1.

A sketch of this model can be found in Figure 1 where the numbers on the arrows denote the
action, the transition probability and the cost respectively. Let τ = 0.5, β be arbitrary, and
let the initial state be x0 = 1. Consider the 0-horizon problem, i.e., the decision maker has to
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1

2 3

1, 0.5, 0 2, 1, 0.5

1, 1, 01, 1, 1

1, 0.5, 0

Figure 2. MDP model of Example 3.8.

make exactly one decision. As we have shown, there is a Markov optimal policy to the AV aRτ -
criterion. Consider the two possible policies σ1 and σ2, which are defined by the first decision
rules f1

0 (1, s∗) := 1 and f2
0 (1, s∗) := 2. Then we have

AV aRσ10.5(C0 |X0 = 1) = 2 and AV aRσ20.5(C0 |X0 = 1) = 0.5.

So, σ2 is AV aR0.5-optimal. But for the Value-at-Risk at level 0.5 of C0 under σ1 and under σ2

respectively we have

V aRσ10.5(C0 |X0 = 1) = 0 and V aRσ20.5(C0 |X0 = 1) = 0.5.

Example 3.8. In this example, we demonstrate that the principle of optimality does not hold
for the Average-Value-at-Risk criterion when we consider policies which depend only on the
current state. We call these policies ‘simple’. Let S = {1, 2, 3}, A = {1, 2}, D(1) = A, D(2) =
D(3) = {1}. The set {0, 0.5, 1} are the possible values of Cn and the transition kernel is given
by

Q({1} × {0}|1, 1) = 0.5, Q({2} × {0}|1, 1) = 0.5, Q({3} × {0.5}|1, 2) = 1,

Q({2} × {1}|2, 1) = 1, Q({3} × {0}|3, 1) = 1.

A sketch of this model can be found in Figure 2 where the numbers on the arrows denote the
action, the transition probability and the cost respectively. Further, let τ = 0.5 and β = 0.4.
Let us again consider the 0- and the 1-horizon problem for the initial state 1. There are three
possible simple policies since there is nothing to decide in states 2 and 3. Define the policies
σ1 = (f1

0 , f
1
1 , . . . ), σ

2 = (f2
0 , f

2
1 , . . . ) and σ3 = (f3

0 , f
3
1 , . . . ) by

f1
0 (1) = 1, f1

1 (1) = 1,

f2
0 (1) = 1, f2

1 (1) = 2,

f3
0 (1) = 2.

Then we obtain

AV aRσ
1

0.5

(
C1
∣∣ X0 = 1

)
= 0.4,

AV aRσ
2

0.5

(
C1
∣∣ X0 = 1

)
= 0.4,

AV aRσ
3

0.5

(
C1
∣∣ X0 = 1

)
= 0.5.

Hence, the two policies σ1 and σ2 are optimal within the class of simple policies in the 1-horizon
case. But for the shifted policies ~σ1 = (f1

1 , . . . ) and ~σ2 = (f2
1 , . . . ), we have

AV aR~σ
1

0.5

(
C0
∣∣ X0 = 1

)
= 0,

AV aR~σ
2

0.5

(
C0
∣∣ X0 = 1

)
= 0.5

and ~σ2 is not optimal in the 0-horizon case, which shows that the principle of optimality does not
hold for the Average Value-at-Risk criterion within the class of simple policies. This example
also shows that the Average Value-at-Risk is not a time-consistent optimization criterion (see
also the next remark).
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Remark 3.9 (Discussion of time-inconsistency of the AV aRτ -criterion). Risk- sensitive criteria
like the AV aRτ or mean-variance (see e.g. Li & Ng (2000)) are known to lack the property of
time-consistency. This has been discussed among others in Björk & Murgoci (2010), Boda &
Filar (2006), Shapiro (2009). However, one has to be careful with the notion of time-consistency,
because there are various ways to interpret it.

Here we indeed present a time-consistent interpretation of the AV aRτ -criterion: First note
that choosing the risk level τ corresponds to choosing the parameter s in the representation

AV aRπτ (CN |X0 = x) = min
s∈R

{
s+

1

1− τ
Eπx[(CN − s)+]

}
because the minimum point is given by s∗(τ) = V aRπτ (CN |X0 = x). Hence as an approx-
imation, our decision maker may fix s instead of τ to choose her risk aversion and simply
solve infπ Eπx[(CN − s)+]. The function x 7→ (x − s)+ may be interpreted as a disutility func-
tion with a certain parameter s which represents the risk aversion of the decision maker. For
this s we compute the optimal policy π∗ as in (3.1). The shifted policy ~π∗ is then optimal

for the problem infπ Eπx′ [(CN−1 − s−C0
β )+] with new state x′ and adapted disutility function

duN−1(x) = (x− s−C0
β )+. It is next possible to choose (under some assumptions) τ∗ such that

π∗ is optimal for the AV aRτ∗-criterion. Adopting this point of view the optimal policy is time-
consistent w.r.t. to the adapted, recursively defined sequence of disutility functions. Also in the
sense that optimal decisions do not depend on scenarios which we already know cannot happen
in the future. The difference to the point of view in Shapiro (2009) is that our investor chooses
the risk aversion parameter s instead of τ which implies that the outer optimization problem
can be skipped.

4. Solution of the infinite Horizon Problem

Here we assume that β < 1 and consider problem (2.2). Note that C∞ ≤ C̄
1−β . We can apply

the same trick as for the finite horizon problem and obtain

inf
π∈Π

AV aRπτ (C∞|X0 = x) = inf
π∈Π

inf
s∈R

{
s+

1

1− τ
Eπx[(C∞ − s)+]

}
= inf

s∈R
inf
π∈Π

{
s+

1

1− τ
Eπx[(C∞ − s)+]

}
= inf

s∈R

{
s+

1

1− τ
inf
π∈Π

Eπx[(C∞ − s)+]
}
.

Now we define for π ∈ Π and (x, s) ∈ Ẽ:

w∞π(x, s) := Eπx[(C∞ − s)+], (x, s) ∈ Ẽ, π ∈ Π

w∞(x, s) := inf
π∈Π

w∞π(x, s), (x, s) ∈ Ẽ. (4.1)

Since Cn ≤ Cn+1 ≤ C̄
1−β Pπ-a.s. it is not difficult to see that the value functions wn of the

previous section are increasing in n. Thus, the following limit is well-defined

w∗(x, s) = lim
n→∞

wn(x, s), (x, s) ∈ Ẽ.

A first result tells us that we can obtain w∞ as the limit of the functions wn.

Theorem 4.1. It holds that w∗ = w∞.

Proof. Since costs are non-negative we obtain

wn(x, s) = inf
π∈Π

Eπx[(Cn − s)+] ≤ inf
π∈Π

Eπx[(C∞ − s)+] = w∞(x, s).
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On the other hand it holds for arbitrary π ∈ Π (note that β < 1)

w∞π(x, s) = Eπx[(C∞ − s)+] = Eπx
[
(Cn + βn+1

∞∑
k=0

βkCn+k+1 − s)+
]

≤ Eπx
[
(Cn + βn+1 C̄

1− β
− s)+

]
.

Since (a+ b)+ ≤ a+ + b if b ≥ 0 this implies

w∞π(x, s) ≤ Eπx
[
(Cn − s)+

]
+ βn+1 C̄

1− β
.

Taking the infimum over all π ∈ Π yields

w∞ ≤ wn + βn+1 C̄

1− β
.

Altogether we have

wn ≤ w∞ ≤ wn + βn+1 C̄

1− β
.

Letting n→∞ yields the statement. �

Next we consider the operator T more closely. First we define the the set M◦ ⊂M by setting:

M◦ :=
{
v ∈M | v(x, s) = 0 for s ≥ C̄

1− β

}
.

On M◦ we define the metric d by

d(u, v) := sup
x,s
|u(x, s)− v(x, s)|, for u, v ∈M◦.

The following properties of d and T hold.

Theorem 4.2. a) The metric space (M◦, d) is complete.
b) T : M◦ →M◦.
c) d(Tu, Tv) ≤ βd(u, v) for u, v ∈M◦.
d) For an arbitrary decision rule f , the operator Tf is monotone, i.e u ≤ v for u, v ∈ M◦

implies Tfu ≤ Tfv.

Proof. a) We have to show that every Cauchy sequence in M◦ convergence towards an
element of M◦ w.r.t. the metric d. Now if (vn) ⊂ M◦ is a Cauchy sequence we can

define a limit pointwise by setting v(x, s) := limn→∞ vn(x, s) for (x, s) ∈ Ẽ. Obviously
limn→∞ d(vn, v) = 0. Moreover, it is easy to see that v inherits the properties of the
sequence (vn), thus v ∈M◦.

b) From Theorem 3.5 we already know that T : M → M. It remains to show that v ∈ M◦

implies that Tv(x, s) = 0 for s ≥ C̄
1−β . Note that we have for all c ≤ C̄:

C̄

1− β
≤

C̄
1−β − c
β

.

This implies for v ∈M◦ and s ≥ C̄
1−β that for all x′ ∈ E:

0 ≤ v
(
x′,

s− c
β

)
≤ v
(
x′,

C̄
1−β − c
β

)
≤ v
(
x′,

C̄

1− β

)
= 0.

Thus we obtain

Tv(x, s) = β inf
a∈D(x)

∫
v
(
x′,

s− c
β

)
Q(dx′ × dc|x, a) = 0

and the statement is shown.



MARKOV DECISION PROCESSES WITH AVERAGE-VALUE-AT-RISK CRITERIA 11

c) For v, w ∈M◦ and fixed (x, s) ∈ Ẽ we obtain

|Tu(x, s)− Tv(x, s)| ≤ β sup
a∈D(x)

∫ ∣∣∣u(x′, s− c
β

)
− v
(
x′,

s− c
β

)∣∣∣Q(dx′ × dc|x, a)

≤ β sup
a∈D(x)

∫
d(u, v)Q(dx′ × dc|x, a) = βd(u, v).

Taking the supremum over all (x, s) ∈ Ẽ yields the statement.
d) Follows directly from the definition of Tf .

�

Finally we can give a solution of the inner optimization problem (4.1) in the next theorem.

Theorem 4.3. The value function w∞ is the unique fixed point of T in M◦ and if there exists
a decision rule f∗ such that w∞ = Tf∗w∞, then the stationary policy (f∗, f∗, . . .) is optimal for
problem (4.1).

Proof. Since by Theorem 4.1 w∞ = limn→∞ T
nV−1 and since V−1 ∈M◦ it follows directly from

Theorem 4.2 and Banach’s fixed point theorem that w∞ ∈M◦ and w∞ is the unique fixed point
of T . Next note that for all π ∈ Π and (x, s) ∈ Ẽ:

w∞π(x, s) = Eπx[(C∞ − s)+] ≥ s− = V−1(s).

Thus we obtain by iterating w∞ = Tf∗w∞ with Theorem 4.2 part d) that

w∞ = lim
n→∞

Tnf∗w∞ ≥ lim
n→∞

Tnf∗V−1 ≥ lim
n→∞

TnV−1 = w∞.

Using monotone convergence we get

w∞(x, s) = lim
n→∞

Tnf∗V−1(x, s) = E(f∗,f∗,...)
x

[
(C∞ − s)+

]
which yields the optimality of the stationary policy (f∗, f∗, . . .). �

As in the previous section, Assumption (C) implies that a decision rule f∗ with the property
w∞ = Tf∗w∞ exists, i.e. f∗ is a minimizer of w∞. The proof is analogous to the proof of
Theorem 3.4.

Theorem 4.4. Under Assumption (C) there exists a decision rule f∗ with the property w∞ =
Tf∗w∞.

Consider now the problem

min
s∈R

(
s+

1

1− τ
w∞(x, s)

)
. (4.2)

The proof of the following theorem is analogous to the proof of Theorem 3.6.

Theorem 4.5. There exists a solution s∗ of problem (4.2) and the optimal stationary policy of
problem (4.1) with initial state (x, s∗) solves problem (2.2).

Remark 4.6. The results of the previous sections hold true when the cost Cn can get negative,
but are bounded from below by a constant C < 0. In this case, considering the cost C̃ := Cn−C
and using the fact that the AV aRτ is translation-invariant, i.e.

AV aRτ (C̃N ) = AV aRτ

(
CN −

N∑
k=0

βkC
)

= AV aRτ (CN )−
N∑
k=0

βkC

transforms the problem into the one considered here. In the general (unbounded) case suitably
integrability conditions have to be imposed.
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5. Numerical Example

In this section, we are going to illustrate the results of Section 3 and the influence of the risk
aversion parameter τ of the AV aRτ -criterion by means of a numerical example. We consider the
undiscounted case β = 1. For the given horizon N ∈ N, we consider N independent identically
distributed games. The probability of winning one game is given by p ∈ (0, 1). We assume that
the gambler starts with the certain capital X0 ∈ N. Further, let Xk−1, k = 1, . . . , N , be the
capital of the gambler right before the k-th game. The final capital is denoted by XN . Before
each game, the gambler has to decide how much capital she wants to bet in the following game
in order to maximize her risk-adjusted profit.

The formal description of the repeated game follows. The state space is S = N0. The action
space is A = N0 with the restriction set D(x) = {0, 1, . . . , x}, x ∈ N0. For ak ∈ D(Xk), we have
Xk+1 = Xk + ak · Zk+1, k = 0, . . . , N − 1, where Zk+1 = 1 if the (k + 1)-th game is won and
Zk+1 = −1 if the (k+1)-th game is lost and the Z1, . . . , ZN are independent. The probability of
winning one game is p ∈ (0, 1). The problem formulation is in terms of maximizing the profit.
In order to correspond with the previous sections, we reformulate the original problem in terms
of minimizing a certain cost. For x ∈ N0, the transition kernel takes the following form:

Q({x+ a} × {co − a} |x, a) := p and Q({x− a} × {co + a} |x, a) := 1− p, a ∈ D(x),

where co := 2N−1X0 such that the one-stage costs remain non-negative for all admissible state-
action pairs since co is the maximal reward the gambler might receive when she always bets
the entire capital. In this manner, the gambler incurs the total cost N2N−1X0 −XN , which is
essentially the negative of the gambler’s final capital. So, we are seeking for policies π∗τ such
that they minimize AV aRπτ (N2N−1X0 −XN |X0) for τ ∈ (0, 1).

Let us assume that p > 1/2, i.e. we have a ‘superfair’ game and τ = 0 so that we have the
case of the expected cost criterion. Then it is known that the ‘bold’ strategy is optimal for any
time horizon N ∈ N, i. e., it is optimal to bet the entire capital at each game.

For our specific numerical example, the probability of winning one game is p = 0.8, the
starting capital is X0 = 5 and the horizon is N = 5 games. In order to derive an optimal policy
with respect to the AV aRτ -criterion, we proceed as proposed in section 3. At first, we compute
the functions wk(x, ·) for all x = 0, . . . , 2N−kX0, k = 1, . . . , N . Then we pick some s∗(τ) such
that it is a minimum point of the function s 7→ s + 1/(1 − τ)wN (X0, s). The AV aRτ -optimal
policy is then given by an optimal policy for problem (3.1) with initial state (X0, s

∗(τ)) and
horizon N .

The functions s 7→ s+ 1/(1− τ)w5(5, s) are illustrated in Figure 3 for several τ ∈ (0, 1). Note
that the merely differentiable looking functions s 7→ s + 1/(1 − τ)w5(5, s) are indeed piecewise
linear, in general non-convex, functions. From Figure 3, we obtain that the minimum point
s∗(τ) increases as τ increases.

Furthermore, we simulated each AV aRτ -optimal policy 100,000 times where the histograms
of the respective final capital can be found in Figure 4. For τ = 0.1230, we obtain that the bold
strategy is optimal which is very risky and which can only end up with capital 0 or 160. On
the other hand we obtain that it is optimal to never bet anything for τ = 0.9750 so that the
final capital is surely 5. The remaining policies are somewhere in between. We observe that
the range of possible outcomes decreases as τ increases. Moreover, the probability of ending up
with no capital diminishes with increasing τ .

The mean of the (1 − τ) · 100 % lowest outcomes of the simulation runs of the final capital,
which is an estimator for the AVaR at level τ of the profit, is presented in Table 1 where π∗τ
denotes an AV aRτ -optimal policy. From Table 1, we obtain that the respective policy is optimal
for the τ which it is supposed to be optimal for.

Remark 5.1. Note that the practical computation of the AV aRτ -optimal policy is quite hard.
Following our derivation it is easy to see that the minimum point of h(s) := s+ 1

1−τwN (x, s) is

within the interval [0, supω C
N (ω)] where an evaluation of h at point s means solving one MDP.

In our example we have supω C
N (ω) = N2N−1X0 = 400. The function h we have to minimize is
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Figure 3. Functions s 7→ s+ 1/(1− τ)w5(5, s).

τ 0.1230 0.2845 0.3770 0.4920 0.5840 0.6610 0.7455 0.8145 0.8530 0.8760 0.9205 0.9750
π∗0.1230 36.91 9.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
π∗0.2845 19.35 16.72 14.60 11.05 7.41 3.76 0.00 0.00 0.00 0.00 0.00 0.00
π∗0.3770 18.23 16.25 14.66 11.87 8.81 5.36 0.20 0.00 0.00 0.00 0.00 0.00
π∗0.4920 17.65 15.99 14.65 12.31 9.50 6.00 0.67 0.13 0.00 0.00 0.00 0.00
π∗0.5840 17.18 15.65 14.41 12.23 9.63 6.37 1.04 0.00 0.00 0.00 0.00 0.00
π∗0.6610 9.91 9.67 9.47 9.13 8.71 8.19 7.26 5.95 4.89 4.18 2.03 0.00
π∗0.7455 9.23 9.06 8.92 8.68 8.39 8.02 7.36 6.38 5.43 4.58 2.61 0.00
π∗0.8145 8.47 8.35 8.26 8.09 7.88 7.63 7.18 6.50 5.84 5.26 3.17 0.08
π∗0.8530 7.66 7.58 7.52 7.41 7.28 7.12 6.82 6.38 5.96 5.58 4.23 0.00
π∗0.8760 6.82 6.78 6.74 6.68 6.61 6.53 6.37 6.13 5.91 5.70 4.98 2.16
π∗0.9205 5.94 5.93 5.92 5.90 5.88 5.85 5.80 5.72 5.65 5.59 5.36 3.96
π∗0.9750 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Table 1. Estimated AVaR of the final capital for the simulated policies.

in general not convex (see Ott (2010), Chapter 7). In our example h is piecewise linear, but this
may not be the case in general. On the positive side, we know that h is Lipschitz-continuous with
constant 2−τ

1−τ . Hence it is possible to find the minimum point by a suitable bisection procedure.



14 N. BÄUERLE AND J. OTT

0 50 100 150

0
.0

0
.2

0
.4

0
.6

τ = 0.1230

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

0
.4

τ = 0.2845

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 5 10 15 20 25

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

τ = 0.3770

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

τ = 0.4920

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

τ = 0.5840

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

τ = 0.6610

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

τ = 0.7455

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

τ = 0.8145

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

τ = 0.8530

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

τ = 0.8760

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

τ = 0.9205

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

τ = 0.9750

Final capital

R
el

at
iv

e 
fr

eq
u

en
cy

Figure 4. Histograms of the final capital for AV aRτ -optimal policies.
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