120 research outputs found

    Quantitative Automata under Probabilistic Semantics

    Full text link
    Automata with monitor counters, where the transitions do not depend on counter values, and nested weighted automata are two expressive automata-theoretic frameworks for quantitative properties. For a well-studied and wide class of quantitative functions, we establish that automata with monitor counters and nested weighted automata are equivalent. We study for the first time such quantitative automata under probabilistic semantics. We show that several problems that are undecidable for the classical questions of emptiness and universality become decidable under the probabilistic semantics. We present a complete picture of decidability for such automata, and even an almost-complete picture of computational complexity, for the probabilistic questions we consider

    Lipschitz Robustness of Finite-state Transducers

    Get PDF
    We investigate the problem of checking if a finite-state transducer is robust to uncertainty in its input. Our notion of robustness is based on the analytic notion of Lipschitz continuity --- a transducer is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions. We show that K-robustness is undecidable even for deterministic transducers. We identify a class of functional transducers, which admits a polynomial time automata-theoretic decision procedure for K-robustness. This class includes Mealy machines and functional letter-to-letter transducers. We also study K-robustness of nondeterministic transducers. Since a nondeterministic transducer generates a set of output words for each input word, we quantify output perturbation using set-similarity functions. We show that K-robustness of nondeterministic transducers is undecidable, even for letter-to-letter transducers. We identify a class of set-similarity functions which admit decidable K-robustness of letter-to-letter transducers.Comment: In FSTTCS 201

    Nested Weighted Limit-Average Automata of Bounded Width

    Get PDF
    While weighted automata provide a natural framework to express quantitative properties, many basic properties like average response time cannot be expressed with weighted automata. Nested weighted automata extend weighted automata and consist of a master automaton and a set of slave automata that are invoked by the master automaton. Nested weighted automata are strictly more expressive than weighted automata (e.g., average response time can be expressed with nested weighted automata), but the basic decision questions have higher complexity (e.g., for deterministic automata, the emptiness question for nested weighted automata is PSPACE-hard, whereas the corresponding complexity for weighted automata is PTIME). We consider a natural subclass of nested weighted automata where at any point at most a bounded number k of slave automata can be active. We focus on automata whose master value function is the limit average. We show that these nested weighted automata with bounded width are strictly more expressive than weighted automata (e.g., average response time with no overlapping requests can be expressed with bound k=1, but not with non-nested weighted automata). We show that the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass with k constant matches the complexity for weighted automata. Moreover, when k is part of the input given in unary we establish PSPACE-completeness

    Edit Distance for Pushdown Automata

    Get PDF
    The edit distance between two words w1,w2w_1, w_2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1w_1 to w2w_2. The edit distance generalizes to languages L1,L2\mathcal{L}_1, \mathcal{L}_2, where the edit distance from L1\mathcal{L}_1 to L2\mathcal{L}_2 is the minimal number kk such that for every word from L1\mathcal{L}_1 there exists a word in L2\mathcal{L}_2 with edit distance at most kk. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1)~deciding whether, for a given threshold kk, the edit distance from a pushdown automaton to a finite automaton is at most kk, and (2)~deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.Comment: An extended version of a paper accepted to ICALP 2015 with the same title. The paper has been accepted to the LMCS journa

    Querying Best Paths in Graph Databases

    Get PDF
    Querying graph databases has recently received much attention. We propose a new approach to this problem, which balances competing goals of expressive power, language clarity and computational complexity. A distinctive feature of our approach is the ability to express properties of minimal (e.g. shortest) and maximal (e.g. most valuable) paths satisfying given criteria. To express complex properties in a modular way, we introduce labelling-generating ontologies. The resulting formalism is computationally attractive - queries can be answered in non-deterministic logarithmic space in the size of the database

    Metallic ground state and glassy transport in single crystalline URh2_2Ge2_2: Enhancement of disorder effects in a strongly correlated electron system

    Get PDF
    We present a detailed study of the electronic transport properties on a single crystalline specimen of the moderately disordered heavy fermion system URh2_2Ge2_2. For this material, we find glassy electronic transport in a single crystalline compound. We derive the temperature dependence of the electrical conductivity and establish metallicity by means of optical conductivity and Hall effect measurements. The overall behavior of the electronic transport properties closely resembles that of metallic glasses, with at low temperatures an additional minor spin disorder contribution. We argue that this glassy electronic behavior in a crystalline compound reflects the enhancement of disorder effects as consequence of strong electronic correlations.Comment: 5 pages, 4 figures, accepted for publication in PR

    Transport properties of moderately disordered UCu4_4Pd

    Full text link
    We present a detailed study on the (magneto)transport properties of as-cast and heat treated material UCu4_4Pd. We find a pronounced sample dependence of the resistivity ρ\rho of as-cast samples, and reproduce the annealing dependence of ρ\rho. In our study of the Hall effect we determine a metallic carrier density for all samples, and a temperature dependence of the Hall constant which is inconsistent with the Skew scattering prediction. The magnetoresistive response is very small and characteristic for spin disorder scattering, suggesting that overall the resistivity is controlled mostly by nonmagnetic scattering processes. We discuss possible sources for the temperature and field dependence of the transport properties, in particular with respect to quantum criticality and electronic localization effects.Comment: 11 pages, 9 figures, submitted PR

    Modal Logics Definable by Universal Three-Variable Formulas

    Get PDF
    We consider the satisfiability problem for modal logic over classes of structures definable by universal first-order formulas with three variables. We exhibit a simple formula for which the problem is undecidable. This improves an earlier result in which nine variables were used. We also show that for classes defined by three-variable, universal Horn formulas the problem is decidable. This subsumes decidability results for many natural modal logics, including T, B, K4, S4, S5
    corecore