122 research outputs found

    Opposite effects of NO2_2 on electrical injection in porous silicon gas sensors

    Full text link
    The electrical conductance of porous silicon fabricated with heavily doped p-type silicon is very sensitive to NO2_2. A concentration of 10 ppb can be detected by monitoring the current injection at fixed voltage. However, we show that the sign of the injection variations depends on the porous layer thickness. If the thickness is sufficiently low -- of the order of few \micro\meter{} -- the injection decreases instead of increasing. We discuss the effect in terms of an already proposed twofold action of NO2_2, according to which the free carrier density increases, and simultaneously the energy bands are bent at the porous silicon surface.Comment: 3 pages, 3 figures, requires SIunits packag

    Role of microstructure in porous silicon gas sensors for NO2_2

    Full text link
    Electrical conductivity of porous silicon fabricated form heavily doped p-type silicon is very sensitive to NO2_2, even at concentrations below 100 ppb. However, sensitivity strongly depends on the porous microstructure. The structural difference between sensitive and insensitive samples is independently confirmed by microscopy images and by light scattering behavior. A way to change the structure is by modifying the composition of the electrochemical solution. We have found that best results are achieved using ethanoic solutions with HF concentration levels between 13% and 15%.Comment: 3 pages, 4 figures, package SIunits require

    Er:Ta<sub>2</sub>O<sub>5</sub> waveguide optimization &amp; spectroscopy

    No full text
    The optimization of erbium-doped Ta thin film waveguides deposited by magnetron sputtering is described. Background losses below 0.4dB/cm have been obtained before post-annealing. A broad photoluminescence spectrum centered at 1534nm is obtained, and the photoluminescence power and fluorescence lifetime increase with post-annealing, yielding promising results for compact amplifiers

    application of raman and brillouin scattering phenomena in distributed optical fiber sensing

    Get PDF
    We present a review of the basic operating principles and measurement schemes of standalone and hybrid distributed optical fiber sensors based on Raman and Brillouin scattering phenomena. Such sensors have been attracting a great deal of attention due to the wide industrial applications they offer, ranging from energy to oil and gas, transportation and structural health monitoring. In distributed sensors, the optical fiber itself acts as a sensing element providing unique measurement capabilities in terms of sensing distance, spatial resolution and number of sensing points. The most common configuration exploits optical time domain reflectometry, in which optical pulses are sent along the sensing fiber and the backscattered light is detected and processed to extract physical parameters affecting its intensity, frequency, phase, polarization or spectral content. Raman and Brillouin scattering effects allow the distributed measurement of temperature and strain over tens of kilometers with meter-scale spatial resolution. The measurement is immune to electromagnetic interference, suitable for harsh environments and highly attractive whenever large industrial plants and infrastructures have to be continuously monitored to prevent critical events such as leakages in pipelines, fire in tunnels as well as structural problems in large infrastructures like bridges and rail tracks. We discuss the basic sensing mechanisms based on Raman and Brillouin scattering effects used in distributed measurements, followed by configurations commonly used in optical fiber sensors. Hybrid configurations which combine Raman and Brillouin-based sensing for simultaneous strain and temperature measurements over the same fiber using shared resources will also be addressed. We will also discuss advanced techniques based on pulse coding used to overcome the tradeoff between sensing distance and spatial resolution affecting both types of sensors, thereby allowing measurements over tens of kilometers with meter-scale spatial resolution, and address recent advances in measurement schemes employing the two scattering phenomena

    Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings

    Get PDF
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002104. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America.This work was financially supported by the European Commission under the FP7 EURO-FOS Network of Excellence (ICT-2007-2-224402), the Ministerio de Educación y Ciencia SINADEC project (TEC2008-06333), and the Natural Sciences and Engineering Research Council of Canada (NSERC). The work of G. E. Villanueva was supported by the Ministerio de Educación y Ciencia Formación de Profesorado Universitario programs. The work of P. Pérez-Millán was supported by the Juan de la Cierva program, JCI-2009-05805.Villanueva Ibáñez, GE.; Jakubinek, M.; Simard, B.; Oton Nieto, CJ.; Matres Abril, J.; Shao, L.; Pérez Millán, P.... (2011). Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings. Optics Letters. 36(11):2104-2106. https://doi.org/10.1364/OL.36.002104S210421063611Sakakibara, Y., Rozhin, A. G., Kataura, H., Achiba, Y., & Tokumoto, M. (2005). Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors. Japanese Journal of Applied Physics, 44(4A), 1621-1625. doi:10.1143/jjap.44.1621Chow, K. K., Yamashita, S., & Song, Y. W. (2009). A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber. Optics Express, 17(9), 7664. doi:10.1364/oe.17.007664Set, S. Y., Yaguchi, H., Tanaka, Y., & Jablonski, M. (2004). Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 10(1), 137-146. doi:10.1109/jstqe.2003.822912Chow, K. K., Tsuji, M., & Yamashita, S. (2010). Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion. Applied Physics Letters, 96(6), 061104. doi:10.1063/1.3304789Chow, K. K., & Yamashita, S. (2009). Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion. Optics Express, 17(18), 15608. doi:10.1364/oe.17.015608Choi, S. Y., Rotermund, F., Jung, H., Oh, K., & Yeom, D.-I. (2009). Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber. Optics Express, 17(24), 21788. doi:10.1364/oe.17.021788Chan, C.-F., Chen, C., Jafari, A., Laronche, A., Thomson, D. J., & Albert, J. (2007). Optical fiber refractometer using narrowband cladding-mode resonance shifts. Applied Optics, 46(7), 1142. doi:10.1364/ao.46.001142Kingston, C. T., Jakubek, Z. J., Dénommée, S., & Simard, B. (2004). Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 42(8-9), 1657-1664. doi:10.1016/j.carbon.2004.02.020Jakubinek, M. B., Johnson, M. B., White, M. A., Guan, J., & Simard, B. (2010). Novel Method to Produce Single-Walled Carbon Nanotube Films and Their Thermal and Electrical Properties. Journal of Nanoscience and Nanotechnology, 10(12), 8151-8157. doi:10.1166/jnn.2010.3014Vallaitis, T., Koos, C., Bonk, R., Freude, W., Laemmlin, M., Meuer, C., … Leuthold, J. (2008). Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 16(1), 170. doi:10.1364/oe.16.00017

    Waveguiding and photoluminescence in Er<sup>3+</sup>-doped Ta<sub>2</sub>O<sub>5</sub> planar waveguides

    No full text
    The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron sputtering onto thermally oxidized silicon wafer is described. Optical constants of the film were determined by ellipsometry. For the slab waveguides, background losses below 0.4dB/cm at 633nm have been obtained before post-annealing. The samples, when pumped at 980nm yielded abroad photoluminescence spectrum (FWHM ~50 nm) centred at 1534nm, corresponding to 4 I 13/2 to the 4 I 15/2 transition of Er3+ ion. The samples were annealed up to 600 °C and both photoluminescence power and fluorescence lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4ms was achieved, yielding promising results for compact waveguide amplifier

    Accurate chromatic dispersion characterization of photonic integrated circuits

    Full text link
    An accurate technique to characterize chromatic dispersion and its slope versus wavelength is reported. The method is based on a heterodyne Mach-Zehnder interferometer, which is immune to thermal phase noise by using a counterpropagating reference beam. Chromatic dispersion profiles are obtained over a broad wavelength region even in short waveguides with considerable loss. Conventional strip silicon waveguides as well as slotted geometries are considered. Theoretical simulations are also presented for comparison, which show good agreement with the experimental results.Manuscript received March 23, 2012; revised May 5, 2012; accepted May 7, 2012. Date of current version May 22, 2012. This work was supported by the Spanish Ministry of Science and Innovation through contracts SINADEC (TEC2008-06333) and DEMOTEC (TEC2008-06360), from Generalitat Valenciana through PROMETEO-2010-087 RD Excellence Program (NANOMET) and Universitat Politecnica de Valencia through PAID-06-10 project 1914. Corresponding author: S. Mas (e-mail: [email protected]).Mas GĂłmez, SM.; Matres Abril, J.; MartĂ­ Sendra, J.; Oton Nieto, CJ. (2012). Accurate chromatic dispersion characterization of photonic integrated circuits. IEEE Photonics Journal. 4(3):825-831. https://doi.org/10.1109/JPHOT.2012.2199294S8258314

    High Human Papillomavirus DNA loads in Inflammatory Middle Ear Diseases

    Get PDF
    Background. Previous studies reported human papillomaviruses (HPVs) in middle ear tumors, whereas these viruses have been poorly investigated in chronic inflammatory middle ear diseases. The purpose of this study was to investigate HPVs in non-tumor middle ear diseases, including chronic otitis media (COM). Methods. COM specimens (n=52), including chronic suppurative otitis media (CSOM) (n=38) and cholesteatoma (COMC) (n=14), as well as normal middle ear specimens (NME) (n=56) were analyzed. HPV DNA sequences and DNA loads were analyzed by quantitative PCR. HPV genotyping was performed by direct sequencing of the amplimers. Results. HPV DNA was detected in 23% (12/52) of COM and in 30.4% (17/56) NME (p&gt;0.05). Specifically, HPV DNA sequences were revealed in 26.3% (10/38) of CSOM and in 14.3% (2/14) COMC (p&gt;.05). Interestingly, the HPV DNA load was higher in COMC (mean 7.47 copy/cell) than in CSOM (mean 1.02 copy/cell), and NME (mean 1.18 copy/cell) (P=.03 and P=.017 versus CSOM and NME, respectively). HPV16 and HPV18 were the main genotypes detected in COMC, CSOM and NME. Conclusions. This data indicates that HPV-positive CSOM and COMC are generally associated with higher viral DNA loads as compared to NME. In addition, for the first time, HPVs were detected in normal middle ear mucosa specimens. This result suggests that NME is an additional epithelial tissue that can be HPV infected
    • …
    corecore