1,424 research outputs found

    Antimicrobial activities of marine fungi from Malaysia

    Get PDF
    Copyright 2011 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD

    Two-pump parametric amplification in the presence of fiber dispersion fluctuations: a comparative study

    Get PDF
    Fiber optical parametric amplifiers (FOPAs) operating based on four-wave mixing (FWM) are versatile devices with increasing applications in optical communication systems. In this paper, the effects of dispersion fluctu�ations on the performance of bandwidth, ripple, parametric gain, and saturation power of a two-pump FOPA based on four-wave and six-wave models are studied and compared. Coupled-amplitude equations representing the non-degenerate FWM process in optical fiber are solved numerically to compute the parametric gain over the communication wavelengths. The behaviors of the performance parameters are critically analyzed and compared with different types of fluctuation strengths (or amplitudes) specified by the combinations of correlation length (Lc) and fluctuation amplitude (σ). Based on the results, it was found that the flat gain bandwidth for the four-wave model remains unchanged and is insensitive to the strengths of fluctuations. The gain ripples, however, get higher as the fluctuation strengths increase. On the other hand, the flat gain bandwidths of the six-wave model are hardly identified due to the tremendous and continuous ripples within the pump wavelengths. In addition, the minimum parametric gain values for both four-wave and six-wave models reduce as the fluctuation strengths increase. Also, the lowest value of parametric gain leads to the highest saturation power and vice versa. The dispersion fluctuations affect the FWM process’s efficiency and deteriorate the overall amplifier performance, particularly for the six-wave model. The numerical analysis obtained via the six-wave model is especially useful since this model closely matches with practical circumstances

    Meander bowtie Antenna for Wearable Application

    Get PDF
    This paper proposes a flexible compact bowtie antenna for medical application that operates at 2.45 GHz. The proposed antennas are miniaturized using meander technique. Both substrates and conducting material of the antenna are made of flexible material semi-transparent film as the substrate and shieldit fabric as the conducting material which suitable for wearable and on body application. The results show that the total length of the antenna is significantly reduced by up to 38%. However, the gain of the antenna is slightly decreased when the size of the antenna become smaller. The results of this research could provide guidance and has significant implication for future development of wearable electronics especially in medical monitoring application

    The Phenomena of Spreading of Hydrotalcite Sol on A Porous Silica Surface Governed by Marangoni Effect

    Get PDF
    Wetting phenomena plays a crucial role in a wide range of technological applications. Spreading of liquids on solids involving phase change is encountered in many areas ranging from biological systems to industrial applications such as coatings, printing, painting and spraying. The fundamental study on wetting of membrane precursors namely hydrotalcite sols on a porous silica surface with different types of precursor material was successfully carried out. Relationship between the contact angle of a hydrotalcite droplet on silica surface and the Marangoni effect was also investigated. The presence of PVA in hydrotalcite sols was found to influence the rheological properties of the sols significantly, resulting in higher viscosity and ultimately leading to lower contact angle on solid surfaces. The degree of hydrotalcite's philicity on a substrate was improved by the addition of PVA solution. In this study, the spreading of a liquid droplet on a solid surface controlled by a surface tension gradient, due to Marangoni effect was found to drive better spreading of the liquid droplet. Marangoni Number, Ma was found to be proportionally related with the surface tension of the sols but inversely proportional to contact angles of the sols. Marangoni forces that decreased the contact angle, promoted spreading of hydrotalcite droplets on the selected glass substrates.Keywords: contact angle, hydrotalcite, marangoni effect, spreading, wetting evolutio

    Requirements Negotiation: Does Consensus Reduce Software Development Cost?

    Get PDF
    The requirements engineering activities within a software project are known to be critical to the successful production of a correctly functioning system. This is particularly so when considering the varying views of multiple stakeholders. One promising approach for improving the outcome is to introduce formal negotiation. Negotiation is beneficial to identify and to resolve conflicts between stakeholders. Consensus achieved through negotiation represents all key stakeholders’ perspectives and perceptions regarding the system to be developed. The aim of implementing negotiation is to minimize the possibility of introducing defects during the creation of requirements and to decrease later effort required to fix requirements’ defects. This paper answers the question of whether consensus gives positive significant impact to the software project as a whole or not. It presents an approach to estimate the savings from implementing negotiation in the requirements elicitation process. An empirical evaluation study is adopted through a role play experiment to evaluate the benefit of exercising negotiation. The net gain and the return on investment show positive values which suggest that negotiation activities are worth an investment. Based on a return on investment of 197 percent on average, this paper suggests that negotiation is a useful prevention activity to inhibit defects from occurring during the requirements creation process

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    Mechanical Properties of Epoxy Composites Containing Carbon Black and Graphene

    Get PDF
    Epoxy composite has been widely used in various industrial applications due to its high strength. Nevertheless, its high strength causes it to fracture easily. Fillers are often added to improve its fracture toughness and other properties. In this work, epoxy composites containing carbon black (CB) and graphene have been synthesized to assess their mechanical properties. Series of analysis have been performed on composites containing single filler (CB or graphene) of various loadings to evaluate the values of Young’s Modulus, yield strength, and KIC. The results demonstrate an improvement in Young’s Modulus, yield strength, and KIC values by adding different carbon fillers, compared to neat epoxy. Based on these results, composites containing dual fillers are fabricated to understand the resultant synergistic effects. The hy-brid fillers show an increment in both fracture toughness and yield strength test for the epoxy composite with an optimum improvement at (3.0 wt.% CB + 0.1 wt.% Graphene) loading which is an increase of 256% in the values of Young’s Modulus, compared to neat epoxy. The addition of carbon fillers enhances the mechanical properties of epoxy composites, with dual fillers demonstrate the highest improve-ment, which could be due to the improvement in the dispersion degree

    Techno-economic Analysis of a Stand-alone Photovoltaic-Diesel Hybrid System for Rural Area in Sarawak

    Get PDF
    Photovoltaic hybrid power generation is an alternative solution for supplying electricity to rural areas, especially in Sarawak, Malaysia, where grid connection is almost impossible due to the cost and geographic location. Diesel generator systems are still used by local communities in these remote areas, and the implementation of photovoltaic diesel hybrid systems can reduce dependency on diesel generator units. The work presented in this paper explores the possibility of integrating solar energy resource with diesel generator to meet the load demand of rural communities in Sarawak. In further detail, the configuration and size of the PV-diesel system are analyzed in based on the lowest net present cost (NPC) and the cost of electricity (COE). The analysis is based on mathematical modeling and simulation using Hybrid Optimization Model for Electric Renewables (HOMER) software. Eight different configurations of two energy resources-photovoltaic panels and diesel generators-are studied and compared. The option with the highest optimization values is considered to be the most feasible electrification solution for the particular rural area. The outcomes of the analysis show that the PV-diesel hybrid configuration proves to be more cost-effective compared to an existing generator-based system in that it reduces fuel dependency and has the lowest NPC and COE among all configurations studied

    Mechanical and structural evaluation of friction stir welded 6061 aluminium alloy lap joints at different welding speeds

    Get PDF
    Lap joints of 6061-T6 aluminium alloy were produced by friction stir welding, and the influence of welding speed on their weld quality was investigated in terms of welding defects, micro- and macrostructures, hardness distribution, and tensile properties as well as effective plate thickness (EPT) by applying the welding speed in the range 20–60 mm min–1 at constant rotation speed of 1000 rpm. The results showed that although tensile shear strength, joint efficiency, and microhardness of the weld nugget zone (WNZ) rather than the heat affected zone (HAZ), and the EPT increased with an increase in welding speed, the average grain size in the WNZ rather than the HAZ decreased. Due to increasing welding speed, the hooking and thinning defects were gradually restricted from the WNZ to the WNZ/TMAZ interface. The fracture mode within the highest tensile shear strength joints was denoted as plate separation along the hook throughout the stir zone
    corecore